Heavy-flavor jets in heavy ion collisions

The 20th International Conference on Strangeness in Quark Matter Busan, Republic of Korea – June 15, 2022

Saehanseul Oh (Sejong University, LBL)

Strangeness 2000 (5th SQM)

- Strangeness Production in Heavy Ion Collision
- Strangeness and the Quark Gluon Plasma
- Strange Matter and Astrophysical Aspects
- Future Developments

SQM 2022 (20th SQM)

- Strangeness and heavy-quark production in nuclear collisions and hadronic interactions
- Hadron resonances in the strongly-coupled partonic and hadronic medium
- Bulk matter phenomena associated with strange and heavy quarks
- QCD phase structure
- Collectivity in small systems
- Strangeness in astrophysics
- Open questions and new developments

Strangeness 2000 (5th SQM)

- Strangeness Production in Heavy Ion Collision
- Strangeness and the Quark Gluon Plasma
- Strange Matter and Astrophysical Aspects
- Future Developments

SQM 2022 (20th SQM)

- Strangeness and heavy-quark production in nuclear collisions and hadronic interactions
- Hadron resonances in the strongly-coupled partonic and hadronic medium
- Bulk matter phenomena associated with strange and heavy quarks
- QCD phase structure
- Collectivity in small systems
- Strangeness in astrophysics
- Open questions and new developments

Strangeness 2000 (5th SQM)

- Strangeness Production in Heavy Ion Collision
- Strangeness and the Quark Gluon Plasma
- Strange Matter and Astrophysical Aspects
- Future Developments

SQM 2022 (20th SQM)

- Strangeness and heavy-quark production in nuclear collisions and hadronic interactions
- Hadron resonances in the stron/v-coupled partonic and hadronic medium
- Bulk matter phenomena associa
- QCD phase structure
- Collectivity in small systems
- Strangenes
- Open ques

vith strange and heavy quarks Heavy-flavor jets?

SOLATE SOLATE STATE STAT

Jets in vacuum

- Hard-scattered parton fragments into final state particles
 → Algorithmic recombination into a Jet
- Jets in vacuum are well understood in pQCD framework

Jets in vacuum

- Hard-scattered parton fragments into final state particles
 → Algorithmic recombination into a Jet
- Jets in vacuum are well understood in pQCD framework

Jets in heavy-ion collisions

- Hard-scattered partons are produced at the very early stages of collisions → Interact with QGP as they traverse it
- Any modifications to jet observables are due to the interaction with the QCD medium → Jet quenching

Heavy-flavor jet

Heavy-flavor jet

Heavy-flavor jet

> HF jet vs. HF hadron or HF's semileptonic decay products

- Direct access to the primary heavy-flavor parton kinematics
- Production and fragmentation effects can be studied separately

How to identify HF jets?

- Using a final-state HF hadron
 - Jets are matched to the HF particle or reconstructed with the HF particle
 - E.g. D⁰-jet, J/ ψ -jet

- Using final-state particles' (i.e. jet constituents) properties
 - Jet tagging based on constituents' secondary vertex displacement, impact parameter, ...
 - E.g. *c*-jet, *b*-jet

- Due to the large mass (m > $\Lambda_{\rm QCD}$), they are well described with pQCD
- Different sensitivity on heavy-quark production processes \rightarrow constraints on pQCD calculation
- Constraints on the gluon fragmentation function

There exists a variety of results in p+p, but only few are discussed here (with apologies!)

> Dead cone effect – Suppression of gluon emission within a cone of angular size $\theta < m_a/E_a$

- > Dead cone effect Suppression of gluon emission within a cone of angular size $\theta < m_q/E_q$
- > D^{0} -jet in 13 TeV p+p collisions
 - Ratio of emission angle distributions for D^0 jets with respect to inclusive jets
 - Significant suppression of small θ emission at low radiator energy

- Small *R* Dominated by HF hadron, suppression of emission at low angle
- Large R Emission recovered

 Suppression near the jet core for b jets compared to inclusive jets

Dead cone effect

Cold nuclear matter effects do not play a major role

Heavy-flavor jets in heavy ion collisions

D⁰-jet in 5.02 TeV Pb+Pb & 200 GeV Au+Au collisions

- Mass-dependent effects are more important at low p_T
- How to isolate mass-dependent effects or color charge effects?

HF jets in AA - x_J

> Selecting back-to-back b-jets (di-b-jet) emphasizes flavor creation process, $gg \rightarrow b\overline{b}$, $q\overline{q} \rightarrow b\overline{b}$ with still sizable contributions from high-order contributions

HF jets in AA - x_J

CMS, JHEP 03 (2018) 181

- Di-b-jet with **R = 0.4** in 5.02 TeV Pb+Pb collisions
- ➤ $x_J = p_{T,jet}^{sublead} / p_{T,jet}^{lead}$: ratio of the subleading to leading jet p_T
- Similar level of momentum imbalance observed in di-b-jets and inclusive di-jets

HF jets in AA – Radial distribution of HF hadron

- > D^{0} -jet with R = 0.4 in 5.02 TeV Pb+Pb
- \blacktriangleright Radial profile of D^0 with respect to the jet

HF jets in AA - Radial distribution of HF hadron

HF jets in AA – Jet shape

> b-jet with R = 0.4 in 5.02 TeV Pb+Pb collisions

 \succ Small angle depletion in b-jet shape with no centrality dependence \leftarrow Dead cone effect in AA

HF jets in AA – J/ ψ fragmentation

- J/ψ -jet with R = 0.3 in 5.02 TeV Pb+Pb
- Fragmentation variable $z = p_{T,J/\psi}/p_{T,jet}$

HF jets in AA – J/ ψ fragmentation

Low $z \leftarrow J/\psi$ produced late in the parton shower

Such a parton cascade experiences larger degree of interaction with the QGP

Jet quenching mechanism should be incorporated in J/ψ suppression models

Summary

Heavy-flavor jets allow

- Direct access to the primary heavy-flavor parton kinematics
- To investigate color effects and mass effects in vacuum and in medium

Current results show

- Direct measurement of the QCD dead cone
- Less suppression from b-jet R_{AA}
- Charm quark diffusion from D^0 radial profile at low p_{T,D^0}
- Low $z J/\psi$ is more suppressed J/ψ production late in the parton shower

GBR2, 09:40 Tue, G. Bak GBR2, 14:20 Tue, A. Silba GBR2, 10:50 Wed, W. Zou

More is yet to come

- sPHENIX and STAR in 2023-2025 Lower p_T → Larger sensitivity to mass-dependent effects (with lower HI background)
- LHC Run 3 and 4 Larger statistics (x100) and improved detectors
- How to disentangle color charge and mass effects?
- Comparability among observables and results from different collaborations?

감사합니다.