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The interesting part of the phase diagram
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The Strategy

@ Calculate/construct an EoS that can be used for finite temperature and density QCD matter.

@ We want to understand QCD matter, not neutron star matter or heavy ion collision matter. The
latter are mere inputs for simulations.
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The Strategy

Calculate/construct an EoS that can be used for finite temperature and density QCD matter.

@ We want to understand QCD matter, not neutron star matter or heavy ion collision matter. The
latter are mere inputs for simulations.

@ Check consistency with known properties at small up/T and nuclear matter.

@ Use this one EoS to calculate astro and heavy ion observables.

Reject unlikely EoS.
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The Chiral mean field model (CMF)

@ The CMF model is an effective description for QCD matter at finite T and np.
@ It is based on a chiral mean field Lagrangian and includes hadronic and quark degrees of freedom.

In the hadronic world chiral symmetry is realized through a parity doublet model including baryons in the lowest
octet and decuplet.

@ Deconfinement is introduced via a PNJL approach.

@ To avoid simultaneous existence of confinded and deconfined
quarks an excluded volume mechanism is used.

@ Model describes lattice QCD results at the same time as
nuclear matter properties.
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A. Motornenko, JS, V. Vovchenko, S. Schramm and H. Stoecker, Phys. Rev. C 101 (2020) no.3, 034904 4/15



The Chiral mean field model (CMF)

@ The CMF model is an effective description for QCD matter at finite T and np.

@ It is based on a chiral mean field Lagrangian and includes hadronic and quark degrees of freedom.

@ In the hadronic world chiral symmetry is realized through a parity doublet model including baryons in the lowest

octet and decuplet.

@ Deconfinement is introduced via a PNJL approach.

@ To avoid simultaneous existence of confinded and deconfined 08  —

quarks an excluded volume mechanism is used.
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@ Model describes lattice QCD results at the same time as
nuclear matter properties.
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@ Compressibility of the CMF EoS is kg = 267 MeV and the
symmetry energy is Sop = 31.9 MeV.

@ Speed of sound for neutron star matter. )

P. Jakobus, A. Motornenko, R. O. Gomes, JS and H. Stoecker, Eur. Phys. J. C 81 (2021) no.1, 41.
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Regions of access to the PD - NS
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@ Starting from the phase diagram in Temperature and density.
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Disclaimer: For now we will ignore any isospin dependence, or assume it can be constraint by measurement.
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Regions of access to the PD - NS

@ Starting from the phase diagram in Temperature and density.

@ For T'= 0 we can use the mass-radius relation of observed stars.
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Regions of access to the PD - NS

@ Starting from the phase diagram in Temperature and density.
@ For T'= 0 we can use the mass-radius relation of observed stars.

@ Constraints from neutron star mergers (pre-merger).
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Regions of access to the PD - NS

@ Starting from the phase diagram in Temperature and density.
@ For T'= 0 we can use the mass-radius relation of observed stars.

@ Constraints from neutron star mergers (pre-merger).
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Regions of access to the PD - BNSM - See talk by A. Motornenko (Wed.)

@ Using BNSM we can also tun on the heat.
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Regions of access to the PD - BNSM - See talk by A. Motornenko (Wed.)

@ Using BNSM we can also tun on the heat.

@ During the post-merger T' < 40 MeV is reached
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I BNSM

05 10 00507 05 a0 o 5 N 20 ;‘160 i T
T [}
Z

o 1201 1
S
=
©

o 80F ]
o
e
(]

40 ]

SIA<2.2
S/IA=0
P————

0 . .
0 1 2 3 45 6 7 8 9 1011 12 13 14
Baryon density [n ]

7Nt
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H. Stoecker, [arXiv:2201.13150 [nucl-th]].
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Regions of access to the PD - CCSN

@ Core Collapse Supernovae (CCSN) can reach even

higher S/A

@ GR Hydro simulation with CMF model:
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logp / (g/cm3)

P. Jakobus, B. Mueller, A. Heger, A. Motornenko, JS and H. Stoecker,
[arXiv:2204.10397 [astro-ph.HE]].

3.2
0.8
2.4 x
3 0.7 =
£ S
o 1
= B2
3| =
L 0.5w
5
15°
0.3
0.1
0.6

200 T T T T T T T T T

Temperature [MeV]
[ee]
o

IN
<]

0

ey

(o2}

o
T

Juey

N

o
T

I BNSM

S/IA<2.2
SIA=0

T T T T
@ Neutron stars

01 2 3 4 5 6 7 8 9 10 11 12 13
Baryon density [n]

14

7/15



Regions of access to the PD - CCSN

@ Core Collapse Supernovae (CCSN) can reach even

higher S/A
@ GR Hydro simulation with CMF model: 200 et
. @D Neutron stars
@ Observables: Neutrinos, GW? I BNSM
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Regions of access to the PD - HIC

@ A method was devised to implement any density
dependent EoS in UrQMD.

@ Bulk evolution consistent with 3+1D hydro + CMF

M. Omana Kuttan, A. Motornenko, JS, H. Stoecker, Y. Nara and M. Bleicher,

Eur. Phys. J. C 82 (2022) no.5, 427
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Regions of access to the PD - HIC

@ A method was devised to implement any density

dependent EoS in UrQMD.

@ Bulk evolution consistent with 3+1D hydro + CMF

@ Initial compression from CMF model in UrQMD
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Eur. Phys. J. C 82 (2022) no.5, 427
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How to study the equation of state using heavy ion collisions

Much of we today think about heavy ion dynamics is motivated by the fluid dynamic picture of HIC: J

Final stage and particle
freeze-out

Pre-equilibrium phase Equilibrated? phase

UrQMD+Hydro Hybrid

Freeze-out: chemical and

Non-equilibrium initial state Fluid dynamic evolution
thermal

H. Petersen, JS, G. Burau, M. Bleicher and H. Stécker, Phys. Rev. C 78 (2008) 044901
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How to study the equation of state using heavy ion collisions

Much of we today think about heavy ion dynamics is motivated by the fluid dynamic picture of HIC:
At low beam energies the initial compression is most relevant. J

Pre-equilibrium phase Equilibrated? phase Final stage and particle
freeze-out

UrQMD+Hydro Hybrid
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Any EoS in UrQMD

A method was devised to implement any density dependent EoS in
UrQMD:

In UrQMD the real part of the interaction is implemented by a density
dependent potential U(np).

Once the mean field potential is known, the change of momentum of
each baryon is calculated as:

or; onp or;

In the Skyrme approach the density dependence is given by a simple form:

Uskyrme(nB) = a(np/no) + B(np/no)” . (2)

going beyond Skyrme we can simply use the effective field energy per
baryon Egelq/A calculated from the CMF model:

Vemr = Egeld/A = Ecmr/A — Errc /A, (3)
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Results on flow

@ As we have seen before, the bulk evolution works properly
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Results on flow

@ As we have seen before, the bulk evolution works properly

@ Flow is much more sensitive to the details of the equation of state.
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Results on flow

@ As we have seen before, the bulk evolution works properly

@ Flow is much more sensitive to the details of the equation of state.

@ The CMF EoS gives good results on all flow coefficients without having to deal with uncertainties like particlization

and initial state or transport coefficients.

in preparation
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Dileptons comparison with hydro

Hydro simulations have suggested a strong increase of the
dilepton vyield for a phase transition:
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Different dilepton rates give both an increase of factor 2.
F. Seck, T. Galatyuk, A. Mukherjee, R. Rapp, JS and J. Stroth,
[arXiv:2010.04614 [nucl-th]].
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Dileptons comparison with hydro

Similar results can be obtained from the
Hydro simulations have suggested a strong increase of the UrQMD+CMF(4PT) transport model:
dilepton vyield for a phase transition:

x1075

— L e e e
QO 24 . 2.4 CMF
o R — inmed. SF rate ] — PT1
= r = i — PT2
- 2.2 ——agrate B 2.2
= r ]
i 2 ] 20
§ 1.8 - e 18
2 r ] b
T 16 - 2 16
@ L ]
8 14 ] 1.4
7] 5 1 2

N ] ly|<0.5, .3 <M[GeV/c?]<.7
S 12F 12

T T T T T 10

D 02 04 06 08 1 12 1.4 0 2 4 6 8 10 12

2 Ejap [AGeV]
Mge (GeV/c?) b

Different dilepton rates give both an increase of factor 2. A significant increase of the low mass dilepton yield is
F. Seck, T. Galatyuk, A. Mukherjee, R. Rapp, JS and J. Stroth,

[arXiv:2010.04614 [nuch-th]]. observed when a phase transition is included in the

UrQMD-CMF model.
Oleh Savchuk, et.al., in preparation 12/15



Light nuclei production
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Light nuclei production

0.8 T T T
@ The double ratio ¢ - p/(d®) is thought to be sensitive —0—CMF-PT2
to spatial baryon fluctuations. (see talk by Kai Jia Sun o
on Tuesday) 06 o 1
K. J. Sun, L. W. Chen, C. M. Ko, J. Pu and Z. Xu, Phys. Lett. B 781 O\o——o\
(2018), 499-504 . o
©
@ We see a very small enhancement in the scenario with EOA r 1
a phase transition. *
@ Important to use realistic EoS with proper
hadronic/nuclear matter. o2r 1
@ For details on the coalescence method employed see
talk by Tom Reichert on Tuesday. 0.0 , , ,
2 3 5 6
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Summary and conclusions

@ We can now use NS, BNSM, CCSN and HIC to scan the high
dnesity QCD phase diagram.

@ Important treasure: The EoS that binds them all!
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Summary and conclusions

@ We can now use NS, BNSM, CCSN and HIC to scan the high
dnesity QCD phase diagram.

@ Important treasure: The EoS that binds them all!

@ Especially for HIC new ideas/methods for old and new models are
necessary.

@ E.g.: Phase transitions in transport.
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Summary and conclusions

@ We can now use NS, BNSM, CCSN and HIC to scan the high
dnesity QCD phase diagram.

@ Important treasure: The EoS that binds them all!

@ Especially for HIC new ideas/methods for old and new models are
necessary.

@ E.g.: Phase transitions in transport.

@ See also poster by Manjunath Omana Kuttan for DL methods to
study the EoS in HIC.
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The baryonic problem

Why do the methods break down?

@ Sudden change of isobaric lines at this
point.

@ From Boson (mesons/gluons)
dominated matter to fermionic matter
(nucleons/quarks).

@ Calculations seem to fail for matter
where (multi-) baryonic interactions
become important.
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A. Motornenko, JS, V. Vovchenko, S. Schramm and H. Stoecker,
Nucl. Phys. A 1005 (2021), 121836
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