Experimental overview on: Electroweak probes in heavy-ion collisions

Andre Ståhl

European Organisation for Nuclear Research

20th International Conference on Strangeness in Quark Matter
Electroweak probes in URHI collisions

Electroweak probes are produced in different stages of the collision.

- **Hard EW probes:**
 - W^\pm, Z and prompt γ
 - Produced in initial hard scattering
 - Production sensitive to initial conditions
 - Provide calibration for jet quenching

- **Soft EW probes:**
 - Thermal γ and **dileptons**
 - Produced in different collision stages
 - Carry thermodynamical information
 - Test QED \rightarrow UPC

Remarks:
- Electroweak probes do not carry colour charge \rightarrow no coupling to strongly interacting matter

References:
- Yongsun Kim, June 16, PL-OTH 17:25
- Zaochen Ye, June 15, PL-BLK 15:35
OUTLINE

- Photons in HI:
 - Direct γ in AuAu
 - Direct γ in PbPb

- EW hard probes in HI:
 - Z/γ^* boson
 - W boson

- EW-tagged jets in PbPb:
 - γ-jets
OUTLINE

- Photons in HI:
 - Direct γ in AuAu
 - Direct γ in PbPb
- EW hard probes in HI:
 - Z/γ^* boson
 - W boson
- EW-tagged jets in PbPb:
 - γ-jets
Photons in HI

Sources of photons in HI:

- Direct photons
- Prompt photons
 - Pre-equilibrium photons
 - Thermal radiation
- Decay photons

- Prompt photons from hard scattering calculable with pQCD.
Photons in HI

Sources of photons in HI:
- Direct photons
- Prompt photons
- Pre-equilibrium photons
- Thermal radiation
- Decay photons

dN/dp_T vs p_T [GeV]

Collision
Pre-equilibrium
QGP
Hadronization
Hadron Gas
Hadronic Decay
Time
Photons in HI

Sources of photons in HI:

- Direct photons
- Prompt photons
- Pre-equilibrium photons
- Thermal radiation
- Decay photons

- Thermal γ sensitive to medium temperature and collective flow
- Spectra \(\sim e^{-E/Teff} \rightarrow Teff \) affected by blueshift due to expanding medium.
Sources of photons in HI:

- Direct photons
 - Prompt photons
 - Pre-equilibrium photons
 - Thermal radiation
- Decay photons

- Significant photon yield from hadronic decay ($\sim \pi^0, \eta$) → main background.
- Photon yield constrains initial conditions, sources, temperature and space-time evolution.
Low p_T direct photon excess

- Significant excess at $p_T < 2$ GeV observed above N_{coll}-scaled pp by PHENIX.
 - Suggest large temperature ($T_{\text{eff}} \sim 240$ MeV) → earlier stage production
Low p_T direct photon excess

- Significant excess at $p_T < 2$ GeV observed above N_{coll}-scaled pp by PHENIX.
 - Suggest large temperature ($T_{\text{eff}} \sim 240$ MeV) \rightarrow earlier stage production
- STAR also see an excess at $p_T < 3$ GeV but 3x lower than PHENIX.
• Significant excess at $p_T < 2$ GeV observed above N_{coll}-scaled pp by PHENIX.
 - Suggest large temperature ($T_{\text{eff}} \sim 240$ MeV) → earlier stage production
• STAR also see an excess at $p_T < 3$ GeV but 3x lower than PHENIX.
• Similar trend measured by ALICE at 2.76 TeV (excess $\sim 2.6\sigma$) → $T_{\text{eff}} \sim 297 \pm 43$ MeV.
Low p_T direct photon excess

- Significant excess at $p_T < 2$ GeV observed above N_{coll}-scaled pp by **PHENIX**.
 - Suggest large temperature ($T_{eff} \sim 240$ MeV) \rightarrow earlier stage production
- **STAR** also see an excess at $p_T < 3$ GeV but 3x lower than **PHENIX**.
- Similar trend measured by **ALICE** at 2.76 TeV (excess $\sim 2.6 \sigma$) $\rightarrow T_{eff} \sim 297 \pm 43$ MeV.
- Models describe **STAR** and **ALICE** data within unc., but underestimate **PHENIX** results at low p_T.

SQM 2022

Andre Stahl - Electroweak probes in heavy-ion collisions

16/06/22
Large direct photon flow

- Large direct γv_2 (\approx pion v_2) measured by PHENIX.
 - Since collective flow needs to build up \rightarrow later stage production.
- Direct γv_2 results from ALICE at 2.76 TeV compatible with PHENIX results at 200 GeV.
• Large direct γv_2 (≈ pion v_2) measured by PHENIX.
 • Since collective flow needs to build up → later stage production.
• Direct γv_2 results from ALICE at 2.76 TeV compatible with PHENIX results at 200 GeV.
• PHENIX large direct γv_2 not reproduced by models.
 • Simultaneous description of yield and v_2 challenging → direct γ puzzle.
Temperature from nonprompt photons

- Temperature extracted from fitting nonprompt γ increases with p_T.
 - Suggests contributions from earlier time production beyond thermal radiation.
 - Dominant contribution from pre-equilibrium at $p_T > 3$ GeV in the model align well with data.
• New direct γ results from ALICE in PbPb at 5.02 TeV.
Direct photon in PbPb @ 5.02 TeV

- New direct γ results from ALICE in PbPb at 5.02 TeV.
- Fairly good agreement between latest theory and RHIC/LHC direct γ yields.
- Improved understanding of photon production in HI over years.
Universal scaling of direct photon production

- Universal power-law scaling of direct γ yield vs N_{ch} seen for different systems and collision energies.
Universal power-law scaling of direct γ yield vs N_{ch} seen for different systems and collision energies.

No p_T dependence of slope α observed contrary to expectations from different γ contributions.
Universal scaling of direct photon production

- Universal power-law scaling of direct γ yield vs N_{ch} seen for different systems and collision energies.
- No p_T dependence of slope α observed contrary to expectations from different γ contributions.
- Fitted slope lower than hydro calculations for thermal γ ($\alpha > 1.5$) \rightarrow impact from pre-equilibrium?
OUTLINE

- Photons in HI:
 - Direct γ in AuAu
 - Direct γ in PbPb

- EW hard probes in HI:
 - Z/γ^* boson
 - W boson

- EW-tagged jets in PbPb:
 - γ-jets
EW boson lifetime \sim QGP formation time in HI collisions

- Clean probes of the initial stage of the HI collision

nPDF modification

Collision Geometry

μ
Probing nPDF in HI

- EW bosons probe flavour separation (u vs d quarks).
- Quark and gluons correlated by DGLAP at small x, high Q^2 → sensitive to gluon PDF.
- Large low-x nPDF uncertainties → need data at forward y or low Drell-Yan mass.
Drell-Yan in pPb

- Measured Drell-Yan over a wide mass range: $15 < M < 600$ GeV.
 - PDF model calculations underestimate data at low masses.
- Forward-backward ratios better described by nuclear PDFs compared to CT14 PDF.
Forward Z boson in pPb

- Measurements compatible with nPDF calculations.
- Results in forward region (small x) more precise than theory calculations.
- $R_{FB} < 1 \rightarrow$ slightly deviates from proton PDF calculations (CTEQ6.1).

New measurements are compared with predictions from various PDF sets (EPPS16, nCTEQ15, CT14+EPPS16) for the ratio R_{pPb} and R_{FB}.

Definitions:
- $R_{pPb} = \frac{N_{pPb}}{N_{e+evt}} \langle T_{AA} \rangle \times \sigma_{pp}$
- $R_{FB} = \frac{d\sigma/dy |_{y>0}}{d\sigma/dy |_{y<0}}$
$y_{\text{cms}} < 0$ sensitive to antishadowing and EMC, while $y_{\text{cms}} > 0$ dominated by shadowing.
- $y_{	ext{cms}} < 0$ sensitive to antishadowing and EMC, while $y_{	ext{cms}} > 0$ dominated by shadowing.
- W^+ results described by nPDF models and deviates from CT14 by 3.5σ at largest y.

\[\frac{d\sigma}{dy_{\text{cms}}} = n\text{CTEQ15} \]

\[\frac{d\sigma}{dy_{\text{cms}}} = n\text{NNPDF2} \]
- $y_{\text{cms}} < 0$ sensitive to antishadowing and EMC, while $y_{\text{cms}} > 0$ dominated by shadowing.
- W^+ results described by nPDF models and deviates from CT14 by 3.5σ at largest y.
- Tension between models and W^- results at bins closest to midrapidity.
- ALICE results extend the trend observed in LHC data to larger rapidities.
- pPb: results at forward rapidity deviate from CT14 PDF and are more precise than EPPS16.
- ALICE results extend the trend observed in LHC data to larger rapidities.
- **pPb**: results at forward rapidity deviate from CT14 PDF and are more precise than EPPS16.
- **PbPb**: results are lower than PDF model (~2σ) → start to be sensitive to nuclear effects.
ALICE yield consistent with N_{coll} scaling as expected if nPDF has no centrality dependence.

- Good agreement with HG-PYTHIA, limited by precision at peripheral.
• **ALICE** yield consistent with N_{coll} scaling as expected if nPDF has no centrality dependence.
 • Good agreement with HG-PYTHIA, limited by precision at peripheral.
• **CMS** Z boson data showed ‘suppression’ in peripheral events consistent with HG-PYTHIA.
Experimental T_{AA} from weak bosons

- **ALICE** yield consistent with N_{coll} scaling as expected if nPDF has no centrality dependence.
- Good agreement with HG-PYTHIA, limited by precision at peripheral.
- **CMS** Z boson data showed ‘suppression’ in peripheral events consistent with HG-PYTHIA.
- **ATLAS** EW boson vs centrality shows slight enhancement not described by HG-PYTHIA.
OUTLINE

- Photons in HI:
 - Direct γ in AuAu
 - Direct γ in PbPb

- EW hard probes in HI:
 - Z/γ^* boson
 - W boson

- EW-tagged jets in PbPb:
 - γ-jets
EW-tagged jets vs inclusive jets can provide insights into color-charge dependent effects.

- EW-tagged jets
- Inclusive jets

EW bosons used to tag the initial state of the jet production.
• γ-tagged jet R_{AA} > inclusive jet R_{AA} in PbPb collisions.
 • Indicate gluon jets lose more energy than quark jets in medium.
• Results of γ-tagged jets higher than model but compatible with SCET calculations.
 • Possibility to constrain the color-charge dependence of jet energy loss.
Near Future HI upgrades at RHIC and LHC

- **LHC Run 3 + HL-LHC:**
 - Significant increase of luminosity and major detector upgrades.

- **STAR Forward Upgrade programme:**
 - Extend tracking and calo. to forward region (2.5 < η < 4).

- **sPHENIX:**
 - New detector at RHIC, planning to take p-Au & Au-Au high statistics data.

- **Electro-Ion Collider at BNL:**
 - Collide e-ion beams at ~20-140 GeV at high luminosity.
Summary

✓ New RHIC/LHC direct γ data in line with latest models + pre-eq. γ.

✓ Direct γ flow and constant slope not yet fully understood.

✓ W/Z bosons at forward y in HI described by nPDF with smaller unc.

✓ Clear geometric bias vs Glauber in PbPb.

✓ γ+jet constrain color dependence of jet energy loss.
Thank you for your attention!
Probing nPDF in PbPb: W bosons

- Measurements well described by nPDF calculations.
Z-hadron correlations in PbPb

- Particle production enhanced at low p_T in central PbPb compared to pp
- Excess in central PbPb seen vs $\Delta \Phi$, peaking at $\Delta \Phi \sim 2.5$.
- CoLBT and hybrid+wake model describes well the PbPb Z-tagged particle production