Resonances in heavy ion collisions

Dmytro (Dima) Oliinychenko Institute for Nuclear Theory, University of Washington June 17, 2022

Strangeness in Quark Matter 2022

Stable hadron yields versus centrality

Ratio to pions • • • K (× 4.0 K*(× 8.0) 10-1 $\Lambda ~(\times ~ 1.9)$ Ξ (× 9.0) $\Omega_{(\times 35.0)}$ ALICE pp $\sqrt{s} = 7$ TeV, |v| < 0.5p-Pb $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV, 0 < $y_{_{\rm CMS}}$ < 0.5 10-2 Pb-Pb $\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}, |y| < 0.5$ 10² 10^{3} 10 $\left< \mathrm{dN}_{\mathrm{ch}} / \mathrm{d\eta} \right>_{|\eta| < 0.5}$

[ALICE, 1807.11321]

Strangeness enhancement see talk by Livio Bianchi

- high multiplicity equilibrated strangeness, grand-canonical statistical model describes the data
- Canonical strangeness suppression: good description, except φ [1807.11321]
- Thermalized core and pp corona interplay [Kanakubo et al, 1910.10556, 2108.07943]

Stable hadron yields versus centrality

[ALICE, 1807.11321]

Strangeness enhancement see talk by Livio Bianchi

- high multiplicity equilibrated strangeness, grand-canonical statistical model describes the data
- Canonical strangeness suppression: good description, except ϕ [1807.11321]
- Thermalized core and pp corona interplay [Kanakubo et al, 1910.10556, 2108.07943]

In (mid-)central PbPb: stable hadron to pion ratio stays \simeq flat Not the case for resonances

Suppression of resonances in high-multiplicity collisions

What do we know about this phenomenon? What can we learn from it?

Suppression of resonances in central collisions II

talk by Aswini Kumar Sahoo

Suppression occurs across large range of energies

Suppression of resonances in central collisions III

Suppression occurs at low p_T

Suppression of resonances in central collisions III

Suppression occurs at low p_T

Origin of suppression: late stage hadronic interactions

Need afterburner to explain resonance yields

Origin of suppression: late stage hadronic interactions

Need afterburner to explain resonance yields

Origin of suppression: late stage hadronic interactions II

Knospe et al, 1509.07895, 2102.06797

- Suppression of low p_T: slow resonance decay products have high chance to scatter ⇒ resonance is not detected
- Enhancement at higher p_T: "radial flow", "pion wind", resonance gets kicked to higher p_T by pions πR → πR or πR → R^{*} → πR

Origin of suppression: late stage hadronic interactions II

- Suppression of low p_T: slow resonance decay products have high chance to scatter ⇒ resonance is not detected
- Enhancement at higher p_T: "radial flow", "pion wind", resonance gets kicked to higher p_T by pions πR → πR or πR → R^{*} → πR

Resonance flow

DO, Shen, 2105.07539

Afterburner suppresses flow v_2 of resonances at small $\langle p_T \rangle$

General understanding of resonance production

- Resonances in full equilibrium at chemical freeze-out
- Hadronic stage (dense mesonic medium):
 - Rescattering of decay products, resonance cannot be detected $K^* \to K\pi, \ \pi\pi \to \rho \to \pi\pi$
 - Rescattering of resonance itself with excitation or without $K^*\pi \to K\rho, \ K^*\rho \to K\pi, \ K^*\pi \to K(1270) \to \rho K$ $\Lambda(1520) \to \pi \Sigma^* \to Kp$
 - Regeneration from decay products $\pi\pi \to \rho$, $\Lambda\pi\pi \to \Lambda(1520)$
- Kinetic freeze-out: resonance yields stop changing Kinetic freeze-out may be not unique for all resonances

Vacuum lifetime ordering conjecture

- "Shorter vacuum lifetime \implies more suppression" Fails with $\Lambda(1520), \Sigma^*, \rho$
- "Vaccum lifetime > hadronic stage duration \implies no suppression" What about \equiv (1530)?
- Vacuum lifetime is not enough Resonance mass, decay channels, cross section with pions matter

Intermediate summary

• Seems that we have some understanding of resonance production, both theoretical and experimental

Intermediate summary

- Seems that we have some understanding of resonance production, both theoretical and experimental
- Do we? Not all resonance yields are reproduced by models
- What can we learn from measured resonance production?

Λ(1520)

MUSIC + SMASH: better $\Lambda(1520)$ description.

What is the difference between MUSIC + SMASH and EPOS + UrQMD? Same class of models, hydro + transport. Conjecture: larger branching ratios of $\Sigma^* \rightarrow \Lambda(1520)\pi$ in SMASH What can we learn: unknown branching ratios

11

$$\Sigma^*
ightarrow \Lambda(1520)\pi$$

- Cross section $\Lambda(1520)\pi \to \Sigma^*$: $\sigma_{max} \sim \frac{B.R.(\Sigma^* \to \Lambda(1520)\pi)}{m_{\Sigma^*} (m_{\Lambda(1520)} + m_{\pi})}$
- Huge cross sections Λ(1520)π → Σ(1660), Σ(1670)
 ... or zero depending on unknown B.R.(Σ* → Λ(1520)π)
- Larger $B.R.(\Sigma^* \to \Lambda(1520)\pi) \implies$ More $\Lambda(1520)$ suppression due to $\Lambda(1520)\pi \to \Sigma^* \to Kp$ chain Larger $\Lambda(1520) \langle p_T \rangle$ due to pion wind $\Lambda(1520)\pi \to \Sigma^* \to \Lambda(1520)\pi$ DO, Shen, 2105.07539; Kuznetsova, Rafelski, 0811.1409
- But: such large cross sections mean $I_{mfp} < I_{Compton}$ Out of transport applicability for $\Lambda(1520)$, need G-matrix approach Cabrera, 1406.2570: Ilner et al. 1707.00060

"Transport practitioner's conjecture"

Transport not reproducing resonance suppression (e.g. $\Xi(1530)$) \implies missing branching ratios and/or reactions

Duration of hadronic stage

• Assume no regeneration, no excitation only rescattering of products

- Fit resonance yield $\frac{dN}{dy}|_{measured} = \frac{dN}{dy}|_{HRG}e^{-\Delta au/ au_R}$
- Unrealistic assumptions \implies large spread of obtained τ

Duration of hadronic stage from transport

Duration of $\Lambda(1520)$ scattering stage $\simeq 12$ fm/c Times from other resonances can be different. It is ok: kinetic freeze-out of different reactions should not be simultaneous.

Limiting case of transport: Rate equation models

Torrieri, Rafelski, hep-ph/0103149, nucl-th/0608061 Kuznetsova, Rafelski, 0811.1409, 0804.3352; Cho, Lee, 1509.04092; Le Roux et al, 2101.07302

- Start from chemical freeze-out, always in kinetic equilibrium
- Assume some $V(\tau)$ and $T(\tau)$ or get $T(\tau)$ by fixing entropy
- Solve coupled rate equations of type

$$\frac{dN_R}{d\tau} = \sum_{a,b} \langle \sigma v_{rel} \rangle_{ab \to R} n_a N_b - \langle \Gamma_R \rangle N_R + \sum_{a,b,c} \langle \sigma v_{rel} \rangle_{ab \to cR} n_a N_b - \sum_{a,b,c} \langle \sigma v_{rel} \rangle_{cR \to ab} n_c N_R$$

• End at fixed T or V_{kin}/V_{ch}

What one learns: relative importance of reactions,

 T_{kin} , V_{kin}/V_{ch} , hadronic phase lifetime $\Delta \tau_{kin}$ Caveats: $\Delta \tau_{kin}$ is determined by $V(\tau)$, no way to get suppression only al low momenta, momentum distribution is assumed always thermal

Partial Chemical Equilibrium limit

- Assume reaction rates much faster than expansion rate
- Expansion conserving entropy and stable particle yields
- Variables: T, stable hadron fugacities
- Stop at temperature T_{kin} same for all species
- What one learns: T_{kin} , V_{kin}/V_{ch}

Motornenko et al, 1908.11730

Conclusions

- Resonances production is sensitive to hadronic stage For some resonances in central collisions yield is suppressed at low p_T , so $\langle p_T \rangle$ is enhanced, v_2 is suppressed For $\Lambda(1520)$ these effects are particularly strong.
- Vacuum lifetime ordering conjecture fails because excitations $R\pi \rightarrow R^*$ matter
- What can one learn from resonances?
 - Infer existence of unknown resonances, e.g. Ξ^* tower
 - Constrain unknown branching ratios
 - Kinetic freeze-out temperature T_{kin}
 - Volume ratio V_{kin}/V_{ch}
 - Maybe hadronic stage duration time using $V(\tau)$ parametrization
 - Infer resonance nature (e.g. does $f_0(980)$ contain *s*-quarks) see talk by Junlee Kim
 - (not in this talk) Spin effects, chiral symmetry restoration see talk by Jihye Song

In memory of Prof. Kyrill Bugaev (1963 – 2021)

In memory of Prof. Kyrill Bugaev (1963 – 2021)

Backup

 $\Lambda(1520)$ destruction and production occur at rather similar rates of course in the end destruction wins

What can we learn from $\Lambda(1520)$ suppression?

Measured $\langle p_T \rangle$ of $\Lambda(1520)$ puts (rather weak) constraints on $\Sigma^* \rightarrow \Lambda(1520)\pi$ branching ratios