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Stable hadron yields versus centrality

[ALICE, 1807.11321]

Strangeness enhancement
see talk by Livio Bianchi

� high multiplicity – equilibrated

strangeness, grand-canonical

statistical model describes the

data

� Canonical strangeness

suppression: good description,

except φ [1807.11321]

� Thermalized core and pp corona

interplay [Kanakubo et al,

1910.10556, 2108.07943]
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In (mid-)central PbPb: stable hadron to pion ratio stays ' flat

Not the case for resonances
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Suppression of resonances in high-multiplicity collisions

What do we know about this phenomenon?

What can we learn from it?
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Suppression of resonances in central collisions II

talk by Aswini Kumar Sahoo

Suppression occurs across large range of energies
3



Suppression of resonances in central collisions III

talks by Dukhishyam Mallick [ALICE, 1910.14419], Junlee Kim

Suppression occurs at low pT 4
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Origin of suppression: late stage hadronic interactions

Knospe et al, 1509.07895, 2102.06797; DO, Shen, 2105.07539

Need afterburner to explain resonance yields
5
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Origin of suppression: late stage hadronic interactions II

Knospe et al, 1509.07895, 2102.06797

� Suppression of low pT : slow resonance decay products have

high chance to scatter =⇒ resonance is not detected

� Enhancement at higher pT : “radial flow”, “pion wind”,

resonance gets kicked to higher pT by pions

πR → πR or πR → R∗ → πR 6



Origin of suppression: late stage hadronic interactions II

DO, Shen, 2105.07539
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Resonance flow

DO, Shen, 2105.07539
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General understanding of resonance production

� Resonances in full equilibrium at chemical freeze-out

� Hadronic stage (dense mesonic medium):

� Rescattering of decay products, resonance cannot be detected

K∗ → Kπ, ππ → ρ→ ππ

� Rescattering of resonance itself with excitation or without

K∗π → Kρ, K∗ρ→ Kπ, K∗π → K (1270) → ρK

Λ(1520) → πΣ∗ → Kp

� Regeneration from decay products

ππ → ρ, Λππ → Λ(1520)

� Kinetic freeze-out: resonance yields stop changing

Kinetic freeze-out may be not unique for all resonances
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Vacuum lifetime ordering conjecture

� “Shorter vacuum lifetime =⇒ more suppression”

Fails with Λ(1520), Σ∗, ρ

� “Vaccum lifetime > hadronic stage duration =⇒ no suppression”

What about Ξ(1530)?

� Vacuum lifetime is not enough

Resonance mass, decay channels, cross section with pions matter
9



Intermediate summary

� Seems that we have some understanding of resonance

production, both theoretical and experimental

� Do we? Not all resonance yields are reproduced by models

� What can we learn from measured resonance production?
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Λ(1520)

MUSIC + SMASH: better Λ(1520) description.

What is the difference between MUSIC + SMASH and EPOS + UrQMD?

Same class of models, hydro + transport.

Conjecture: larger branching ratios of Σ∗ → Λ(1520)π in SMASH

What can we learn: unknown branching ratios 11



Σ∗ → Λ(1520)π

SMASH	2.0
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� Cross section Λ(1520)π → Σ∗: σmax ∼ B.R.(Σ∗→Λ(1520)π)
mΣ∗−(mΛ(1520)+mπ)

� Huge cross sections Λ(1520)π → Σ(1660),Σ(1670)

. . . or zero depending on unknown B.R.(Σ∗ → Λ(1520)π)

� Larger B.R.(Σ∗ → Λ(1520)π) =⇒
More Λ(1520) suppression due to Λ(1520)π → Σ∗ → Kp chain

Larger Λ(1520) 〈pT 〉 due to pion wind Λ(1520)π → Σ∗ → Λ(1520)π
DO, Shen, 2105.07539; Kuznetsova, Rafelski, 0811.1409

� But: such large cross sections mean lmfp < lCompton

Out of transport applicability for Λ(1520), need G-matrix approach

Cabrera, 1406.2570; Ilner et al, 1707.00060
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Conjecture

“Transport practitioner’s conjecture”

Transport not reproducing resonance suppression

(e.g. Ξ(1530)) =⇒ missing branching ratios

and/or reactions
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Duration of hadronic stage

talk by Dukhishyam Mallic

� Assume no regeneration, no excitation

only rescattering of products

� Fit resonance yield dN
dy |measured = dN

dy |HRGe
−∆τ/τR

� Unrealistic assumptions =⇒ large spread of obtained τ 14



Duration of hadronic stage from transport

Stopping the simulation at earlier time tend
DO, Shen, 2105.07539
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Times from other resonances can be different. It is ok: kinetic

freeze-out of different reactions should not be simultaneous.
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Limiting case of transport: Rate equation models

Torrieri, Rafelski, hep-ph/0103149, nucl-th/0608061

Kuznetsova, Rafelski, 0811.1409, 0804.3352; Cho, Lee, 1509.04092; Le Roux et al, 2101.07302

� Start from chemical freeze-out, always in kinetic equilibrium

� Assume some V (τ) and T (τ) or get T (τ) by fixing entropy
� Solve coupled rate equations of type

dNR

dτ
=

∑
a,b

〈σvrel〉ab→RnaNb − 〈ΓR〉NR +

∑
a,b,c

〈σvrel〉ab→cRnaNb −
∑
a,b,c

〈σvrel〉cR→abncNR

� End at fixed T or Vkin/Vch

What one learns: relative importance of reactions,

Tkin, Vkin/Vch, hadronic phase lifetime ∆τkin

Caveats: ∆τkin is determined by V (τ), no way to get suppression

only al low momenta, momentum distribution is assumed always

thermal
16



Partial Chemical Equilibrium limit

� Assume reaction rates much faster than expansion rate

� Expansion conserving entropy and stable particle yields

� Variables: T , stable hadron fugacities

� Stop at temperature Tkin same for all species

� What one learns: Tkin, Vkin/Vch

Motornenko et al, 1908.11730
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Conclusions

� Resonances production is sensitive to hadronic stage
For some resonances in central collisions yield is suppressed at low pT ,

so 〈pT 〉 is enhanced, v2 is suppressed

For Λ(1520) these effects are particularly strong.

� Vacuum lifetime ordering conjecture fails

because excitations Rπ → R∗ matter
� What can one learn from resonances?

� Infer existence of unknown resonances, e.g. Ξ∗ tower

� Constrain unknown branching ratios

� Kinetic freeze-out temperature Tkin

� Volume ratio Vkin/Vch

� Maybe hadronic stage duration time using V (τ)

parametrization

� Infer resonance nature (e.g. does f0(980) contain s-quarks)
see talk by Junlee Kim

� (not in this talk) Spin effects, chiral symmetry restoration
see talk by Jihye Song
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In memory of Prof. Kyrill Bugaev (1963 – 2021)
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Backup
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Reaction rates from SMASH, Λ(1520)

Σ(1660)	↔	Λ(1520)π
Σ(1670)	↔	Λ(1520)π
Σ(1775)	↔	Λ(1520)π
Λ(1520)	↔	KN
Λ(1520)	↔	Σπ
Λ(1520)	↔	Λσ
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Λ(1520) destruction and production occur at rather similar rates

of course in the end destruction wins
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What can we learn from Λ(1520) suppression?

set	of	Σ*→Λ(1520)π	branching	ratios

ALICE,	2.76	TeV
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SMASH THERMUS PDG

default test 1 test 2 test 3 > 0

Σ(1660) 0.2 0 0 0 > 0

Σ(1670) 0.14 0 0 0 > 0

Σ(1750) 0 0 0 0 > 0

Σ(1775) 0.26 0.26 0.2 0 0.17-0.23

Σ(1915) 0.59 0.59 0 0 -

Σ(1940) 0.17 0.17 0 0 > 0

Σ(2030) 0.195 0.195 0.15 0 0.1-0.2

Measured 〈pT 〉 of Λ(1520) puts (rather weak) constraints on

Σ∗ → Λ(1520)π branching ratios 22
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