Resonances in heavy ion collisions

Dmytro (Dima) Oliinychenko
Institute for Nuclear Theory, University of Washington
June 17, 2022

Strangeness in Quark Matter 2022
Stable hadron yields versus centrality

Strangeness enhancement
see talk by Livio Bianchi

- high multiplicity – equilibrated strangeness, grand-canonical statistical model describes the data

- Canonical strangeness suppression: good description, except ϕ [1807.11321]

- Thermalized core and pp corona interplay [Kanakubo et al, 1910.10556, 2108.07943]
Stable hadron yields versus centrality

Strangeness enhancement
see talk by Livio Bianchi

- high multiplicity – equilibrated strangeness, grand-canonical statistical model describes the data
- Canonical strangeness suppression: good description, except ϕ [1807.11321]
- Thermalized core and pp corona interplay [Kanakubo et al, 1910.10556, 2108.07943]

In (mid-)central PbPb: stable hadron to pion ratio stays \sim flat
Not the case for resonances
Suppression of resonances in high-multiplicity collisions

What do we know about this phenomenon?
What can we learn from it?
Suppression of resonances in central collisions II

Suppression occurs across large range of energies
Suppression of resonances in central collisions III

talks by Dukhishyam Mallick [ALICE, 1910.14419], Junlee Kim

Suppression occurs at low p_T
Suppression of resonances in central collisions III

talks by Dukhishyam Mallick [ALICE, 1910.14419], Junlee Kim

Suppression occurs at low p_T
Origin of suppression: late stage hadronic interactions

Knospe et al, 1509.07895, 2102.06797; DO, Shen, 2105.07539

Need afterburner to explain resonance yields
Origin of suppression: late stage hadronic interactions

Knospe et al, 1509.07895, 2102.06797; DO, Shen, 2105.07539

Need afterburner to explain resonance yields
Suppression of low p_T: slow resonance decay products have high chance to scatter \implies resonance is not detected

Enhancement at higher p_T: “radial flow”, “pion wind”, resonance gets kicked to higher p_T by pions

$\pi R \rightarrow \pi R$ or $\pi R \rightarrow R^* \rightarrow \pi R$
• Suppression of low p_T: slow resonance decay products have high chance to scatter \implies resonance is not detected

• Enhancement at higher p_T: “radial flow”, “pion wind”, resonance gets kicked to higher p_T by pions

$\pi R \rightarrow \pi R$ or $\pi R \rightarrow R^* \rightarrow \pi R$
Afterburner suppresses flow v_2 of resonances at small $\langle p_T \rangle$
General understanding of resonance production

- Resonances in full equilibrium at chemical freeze-out
- Hadronic stage (dense mesonic medium):
 - Rescattering of decay products, resonance cannot be detected
 \[K^* \rightarrow K\pi, \pi\pi \rightarrow \rho \rightarrow \pi\pi \]
 - Rescattering of resonance itself with excitation or without
 \[K^*\pi \rightarrow K\rho, K^*\rho \rightarrow K\pi, K^*\pi \rightarrow K(1270) \rightarrow \rho K \]
 \[\Lambda(1520) \rightarrow \pi\Sigma^* \rightarrow K\rho \]
 - Regeneration from decay products
 \[\pi\pi \rightarrow \rho, \Lambda\pi\pi \rightarrow \Lambda(1520) \]
- Kinetic freeze-out: resonance yields stop changing
 Kinetic freeze-out may be not unique for all resonances
Vacuum lifetime ordering conjecture

“Shorter vacuum lifetime \implies more suppression”
Fails with $\Lambda(1520)$, Σ^*, ρ

“Vacuum lifetime \geq hadronic stage duration \implies no suppression”
What about $\Xi(1530)$?

Vacuum lifetime is not enough
Resonance mass, decay channels, cross section with pions matter
Intermediate summary

• Seems that we have some understanding of resonance production, both theoretical and experimental
Intermediate summary

- Seems that we have some understanding of resonance production, both theoretical and experimental
- Do we? Not all resonance yields are reproduced by models
- What can we learn from measured resonance production?
MUSIC + SMASH: better $\Lambda(1520)$ description.

What is the difference between MUSIC + SMASH and EPOS + UrQMD?

Same class of models, hydro + transport.

Conjecture: larger branching ratios of $\Sigma^* \rightarrow \Lambda(1520)\pi$ in SMASH

What can we learn: unknown branching ratios
$\Sigma^* \rightarrow \Lambda(1520)\pi$

- Cross section $\Lambda(1520)\pi \rightarrow \Sigma^*$: $\sigma_{max} \sim \frac{B.R.(\Sigma^* \rightarrow \Lambda(1520)\pi)}{m_{\Sigma^*} - (m_{\Lambda(1520)} + m_{\pi})}$
- Huge cross sections $\Lambda(1520)\pi \rightarrow \Sigma(1660), \Sigma(1670)$
 ... or zero depending on unknown $B.R.(\Sigma^* \rightarrow \Lambda(1520)\pi)$
- Larger $B.R.(\Sigma^* \rightarrow \Lambda(1520)\pi)$ \implies
 More $\Lambda(1520)$ suppression due to $\Lambda(1520)\pi \rightarrow \Sigma^* \rightarrow Kp$ chain
 Larger $\Lambda(1520)\langle p_T \rangle$ due to pion wind $\Lambda(1520)\pi \rightarrow \Sigma^* \rightarrow \Lambda(1520)\pi$

DO, Shen, 2105.07539; Kuznetsova, Rafelski, 0811.1409

- But: such large cross sections mean $l_{mfp} < l_{Compton}$
 Out of transport applicability for $\Lambda(1520)$, need G-matrix approach

Cabrera, 1406.2570; Ilner et al, 1707.00060
“Transport practitioner’s conjecture”
Transport not reproducing resonance suppression
(e.g. $\Xi(1530)$) \implies missing branching ratios
and/or reactions
Duration of hadronic stage

- Assume no regeneration, no excitation
 only rescattering of products
- Fit resonance yield \(\frac{dN}{dy} \big|_{measured} = \frac{dN}{dy} \big|_{HRG} e^{-\Delta\tau/\tau_R} \)
- Unrealistic assumptions \(\implies \) large spread of obtained \(\tau \)
Duration of hadronic stage from transport

Stopping the simulation at earlier time t_{end}

DO, Shen, 2105.07539

- hydro + decays
- hydro + afterburner

$0.1 \ e^{-(t-13)/12} + 0.03$

PbPb, 5.02 TeV, 0-10%

ALICE, 2.76 TeV data

Duration of $\Lambda(1520)$ scattering stage $\simeq 12$ fm/c

Times from other resonances can be different. It is ok: kinetic freeze-out of different reactions should not be simultaneous.
Limiting case of transport: Rate equation models

Torrieri, Rafelski, hep-ph/0103149, nucl-th/0608061
Kuznetsova, Rafelski, 0811.1409, 0804.3352; Cho, Lee, 1509.04092; Le Roux et al, 2101.07302

- Start from chemical freeze-out, always in kinetic equilibrium
- Assume some $V(\tau)$ and $T(\tau)$ or get $T(\tau)$ by fixing entropy
- Solve coupled rate equations of type

\[
\frac{dN_R}{d\tau} = \sum_{a,b} \langle \sigma v_{rel} \rangle_{ab \rightarrow R} n_a N_b - \langle \Gamma_R \rangle N_R + \]

\[
\sum_{a,b,c} \langle \sigma v_{rel} \rangle_{ab \rightarrow cR} n_a N_b - \sum_{a,b,c} \langle \sigma v_{rel} \rangle_{cR \rightarrow ab} n_c N_R
\]

- End at fixed T or V_{kin}/V_{ch}

What one learns: relative importance of reactions, T_{kin}, V_{kin}/V_{ch}, hadronic phase lifetime $\Delta \tau_{kin}$

Caveats: $\Delta \tau_{kin}$ is determined by $V(\tau)$, no way to get suppression only at low momenta, momentum distribution is assumed always thermal
Partial Chemical Equilibrium limit

- Assume reaction rates much faster than expansion rate
- Expansion conserving entropy and stable particle yields
- Variables: T, stable hadron fugacities
- Stop at temperature T_{kin} same for all species
- What one learns: T_{kin}, V_{kin}/V_{ch}

Motornenko et al, 1908.11730
Conclusions

- Resonances production is sensitive to hadronic stage
 For some resonances in central collisions yield is suppressed at low p_T, so $\langle p_T \rangle$ is enhanced, v_2 is suppressed
 For $\Lambda(1520)$ these effects are particularly strong.
- Vacuum lifetime ordering conjecture fails
 because excitations $R_\pi \rightarrow R^*$ matter
- What can one learn from resonances?
 - Infer existence of unknown resonances, e.g. Ξ^* tower
 - Constrain unknown branching ratios
 - Kinetic freeze-out temperature T_{kin}
 - Volume ratio V_{kin}/V_{ch}
 - Maybe hadronic stage duration time using $V(\tau)$ parametrization
 - Infer resonance nature (e.g. does $f_0(980)$ contain s-quarks) see talk by Junlee Kim
 - (not in this talk) Spin effects, chiral symmetry restoration see talk by Jihye Song
In memory of Prof. Kyrill Bugaev (1963 – 2021)
In memory of Prof. Kyrill Bugaev (1963 – 2021)
Backup
Reaction rates from SMASH, $\Lambda(1520)$

$\Sigma(1660) \leftrightarrow \Lambda(1520)\pi$
$\Sigma(1670) \leftrightarrow \Lambda(1520)\pi$
$\Sigma(1775) \leftrightarrow \Lambda(1520)\pi$
$\Lambda(1520) \leftrightarrow KN$
$\Lambda(1520) \leftrightarrow \Sigma\pi$
$\Lambda(1520) \leftrightarrow \Lambda\sigma$

Reactions [a.u.] (to be normalized)

-300 -300
0 0
20 20
40 40
60 60
80 80
100 100

Lepton destruction and production occur at rather similar rates
of course in the end destruction wins
What can we learn from $\Lambda(1520)$ suppression?

Measured $\langle p_T \rangle$ of $\Lambda(1520)$ puts (rather weak) constraints on $\Sigma^* \rightarrow \Lambda(1520)\pi$ branching ratios