Short-Range Correlated nucleon pairs in nuclei

Meytal Duer

June 17th, 2022

Busan, Republic of Korea
Nucleon-nucleon interaction

- Dominated by the **scalar interaction**
- Scalar $\rightarrow 0$: strong **tensor attraction**

 spin/isospin dependent
Nucleon-nucleon interaction

- Dominated by the **scalar interaction**
- Scalar $\to 0$: strong **tensor attraction**
 spin/isospin dependent

- **NN models:**
 - contain experimentally determined parameters
 - large model dependence at short-distance / high-momentum

![Graph showing V(r) vs r [fm] with labels for attractive and repulsive regions.](image-url)
Short-Range Correlations (SRC)

- Nucleon pairs in close proximity

\[\rho \sim (2-5)\rho_0 \]

\[2N\text{-SRC} \]

\[\rho_0 = 0.16 \text{ fm}^{-3} \]

\[\rho \sim 1 \text{ fm} \]

\[1.7 \text{ fm} \]
Short-Range Correlations (SRC)

- Nucleon pairs in close proximity
- Large *relative* \(k_{\text{rel}} > k_F\) momentum and small *center-of-mass* \(k_{\text{c.m.}} < k_F\) motion (relative to the Fermi momentum \(k_F \approx 250\) MeV/c)

\[
k_{\text{rel}} = (k_1 - k_2)/2 \quad \quad k_{\text{c.m.}} = k_1 + k_2
\]
SRC picture of nuclei

Nuclear Shell Model

Wigner, Mayer and Jensen
1963 Nobel Prize

1st successful description

- ground-state energies
- excitation spectra
- ...

Mean-Field

\(\sim k_F \)
SRC picture of nuclei

Mean-Field

$\sim k_F$

High-momentum tail

A-1

A-2
Correlations and High Momentum

Universal!

\[P(p) = p^2 n(p)/A \]
SRC picture of nuclei

- Mean-Field
- High-momentum tail
- High-momenta \Rightarrow probing Pairs
Why do we care?

nucleon-nucleon interaction

Mean-Field Theory

Short distance structure of nuclei

asymmetric nuclear matter

quark-gluon structure of bound nucleons (EMC effect)
Why do we care?

nucleon-nucleon interaction

Mean-Field Theory

100%

60-70%

Lapikas, NPA 553 (1993)

short distance structure of nuclei

Deuteron

n(k)

k [GeV/c]

0.1 0.3 0.5 0.7 0.9

asymmetric nuclear matter

quark-gluon structure of bound nucleons (EMC effect)
Why do we care?

nucleon-nucleon interaction

Mean-Field Theory

100%

60-70%

Lapikas, NPA 553 (1993)

quark-gluon structure of bound nucleons (EMC effect)

short distance structure of nuclei

Deuteron

asymmetric nuclear matter

Lapikas, NP 553 (1993)
How do we study SRC?

- **Hard knockout reaction**
 - high-energy (several GeV)
 - large momentum-transfer
- Breakup the SRC pair
How do we study SRC?

- **Hard knockout reaction**
 - high-energy (several GeV)
 - large momentum-transfer
- Breakup the SRC pair
How do we study SRC?

- **Hard knockout reaction**
 - high-energy (several GeV)
 - large momentum-transfer
- Breakup the SRC pair
- Triple coincidence measurement $A(e,e'NN) N=p/n$
- Reconstruct the initial state
SRC @ Jefferson Lab

- Located in Virginia, USA
- Electron beam (12 GeV)
- 4 experimental halls
CEBAF Large Acceptance Spectrometer

- Drift chambers
- Scintillators
- Cherenkov
- Target
- Calorimeters
- Electron beam
- Large-acceptance
- Open \((e,e')\) trigger
- Low luminosity
Do high-momentum nucleons come in pairs?

Yes!

I. Korover et al., PLB (2021)
Do high-momentum nucleons come in pairs? Yes!

Incident electron

Scattered electron

Knocked-out proton

Correlated partner

Back-to-back = SRC pairs

O. Hen et al., Science (2014)
Do high-momentum nucleons come in pairs? Yes!

"large relative and small center-of-mass motion"

E. Cohen et al., PRL (2018)
Do high-momentum nucleons come in pairs? Yes!

Consistent with Mean-Field calculations

E. Cohen et al., PRL (2018)
What kind? Predominantly neutron-proton pairs

No A dependence -> Universal!

MD, PRL (2019); MD, Nature (2018); Hen, Science (2014); Korover, PRL (2014); Subedi, Science (2008); Shneor, PRL (2007); Piasetzky, PRL (2006); Tang, PRL (2003);
What kind? Predominantly neutron-proton pairs

No A dependence -> Universal!

Also seen in ab-initio pair distributions

MD, PRL (2019); MD, Nature (2018); Hen, Science (2014); Korover, PRL (2014); Subedi, Science (2008); Shneor, PRL (2007); Piasetzky, PRL (2006); Tang, PRL (2003);

Schiavilla et al., PRL 98 (2007)

Sargsian et al., PRC 71 (2005); Ciofi and Alvioli, PRL 100 (2008)
What kind? Predominantly neutron-proton pairs

No A dependence - Universal!

Also seen in ab-initio pair distributions

MD, PRL (2019); MD, Nature (2018); Hen, Science (2014); Korover, PRL (2014); Subedi, Science (2008); Shneor, PRL (2007); Piasetzky, PRL (2006); Tang, PRL (2003);

Schiavilla et al., PRL 98 (2007)
Sargsian et al., PRC 71 (2005); Ciofi and Alvioli, PRL 100 (2008)
What do excess neutrons do?

- don’t correlate?
- correlate with core protons?
- correlate with each other?
Comparing proton & neutron dynamics

Protons grow Neutrons saturate

Correlation probability

Protons ‘Speed-Up’ in neutron-rich nuclei

MD et al., Nature 560 (2018)
Comparing proton & neutron dynamics

Protons grow Neutrons saturate

Correlation probability

Protons may have an outsize influence on the properties of neutron stars and other neutron-rich objects.

Protons strongly influence the behaviour of neutron stars.

Surprising Accelerator Finding Could Change the Way We Think About Neutron Stars.
Nuclear symmetry energy

Phenomenological models
60 examples

Microscopic & ab initio theories
11 examples

N.-B. Zhang & B.-A. Li, APJ 902 (2020)
SRC effects on nuclear symmetry energy

Phenomenological nucleon momentum distribution $n^J_k (J=\rho/n)$
guided by microscopic theories & experimental findings

$\Delta_J + \beta_J \left(\frac{|k|}{k_F'} \right)^4 , \quad 0 < |k| < k_F'$,

$n^J_k (\rho, \delta) \equiv n^J_\rho (|k|, \delta) = \begin{cases} \Delta_J + \beta_J \left(\frac{|k|}{k_F'} \right)^4 , & 0 < |k| < k_F' , \\ C_J \left(\frac{k_F'}{|k|} \right)^4 , & k_F' < |k| < \phi_J k_F'. \end{cases}$

* parameters assumed to have linear isospin-asymmetry dependence
based on predictions from self-consistent Green’s function (SCGF)

FFG = free Fermi gas

SRC effects on nuclear symmetry energy

Consequence: symmetry energy gets softened

FFG = free Fermi gas
HMT = high-momentum tail
SCGF = self-consistent Green's function
SNM = symmetric nuclear matter
PNM = pure neutron matter
Going more neutron-rich

- Limited to stable nuclei $N/Z \leq 1.5$

- Radioactive-ion beams
 - larger N/Z asymmetry
 - systematics of isospin-asymmetry

- Kinematically complete measurement $A(p,2pN)A-2$
1st measurement in inverse kinematics

- BM@N setup, JINR (2018)
- Well known system: ^{12}C
- High-energy: 3 GeV/nucleon

→ Identify SRC signal in inverse kinematics
1st measurement in inverse kinematics

- BM@N setup, JINR (2018)
- Well known system: ^{12}C
- High-energy: 3 GeV/nucleon

→ **Identify SRC signal in inverse kinematics**

np-pairs: $^{12}\text{C}(p,2p)^{10}\text{B}$ – 23 events

pp-pairs: $^{12}\text{C}(p,2p)^{10}\text{Be}$ – 2 events

→ np-dominance

* correlated partner not measured

Patsyuk, Kahlbow et al., Nature Physics 17 (2021)
1st measurement in inverse kinematics

- BM@N setup, JINR (2018)
- Well known system: ^{12}C
- High-energy: 3 GeV/nucleon

→ Identify SRC signal in inverse kinematics

Identifying the Signal

\[^{12}\text{C}_{(p,2p)}^{10}\text{B} \]

- Cohen et al., PRL 121 (2018)
- Patsyuk, Kahlbow et al., Nature Physics 17 (2021)

Experimental Setup

- BM@N setup, JINR (2018)
- Well known system: ^{12}C
- High-energy: 3 GeV/nucleon

Fragment Momentum to c.m. Motion

- Identify SRC signal in inverse kinematics

Graphical Representation

- Recoil fragment momentum \(p_{10B,y} \) vs. c.m. motion

- Cohen et al., PRL 121 (2018)

Experimental Data

- JINR $^{12}\text{C}_{(p,2p)}^{10}\text{B}$
- JLab $(e,e'n)$
- Colle et al. ${^1\text{S}_0}$ pairs
- Fermi-Gas (All Pairs)

Patsyuk, Kahlbow et al., Nature Physics 17 (2021)
SRC @ R³B/GSI

- Pioneering experiment with radioactive-ion beam
 May 2022 (A. Corsi et al.)

- R³B setup at GSI

- \(^{16}\text{C}\) \((^{12}\text{C} \text{ as ref.})\) at 1.25 GeV/nucleon

- First **fully exclusive** measurement \(A(p,2pN)A-2\)

Diagram:

- \(^{16}\text{C}\) beam
- \((p,2p)\) reaction
- CALIFA (LH target + Si tracker inside)
- GLAD magnet
- NeULAND
- TOFD
- Recoil proton
- Recoil neutron
- Residual fragment
SRC @ R3B/GSI

- Pioneering experiment with radioactive-ion beam
 May 2022 (A. Corsi et al.)

- R3B setup at GSI

- 16C (12C as ref.) at 1.25 GeV/nucleon

- First **fully exclusive** measurement $A(p,2pN)A$-2

Online spectrum
 SRC @ R³B/GSI

- Pioneering experiment with radioactive-ion beam
 May 2022 (A. Corsi et al.)
- R³B setup at GSI
- 16C (12C as ref.) at 1.25 GeV/nucleon
- First **fully exclusive** measurement $A(p,2pN)A-2$
Pioneering experiment with radioactive-ion beam
May 2022 (A. Corsi et al.)

R³B setup at GSI

¹⁶C (¹²C as ref.) at 1.25 GeV/nucleon

First fully exclusive measurement A(p,2pN)A-2
SRC @ R3B/GSI

- Pioneering experiment with radioactive-ion beam
 May 2022 (A. Corsi et al.)
- R3B setup at GSI
- 16C (12C as ref.) at 1.25 GeV/nucleon
- First **fully exclusive** measurement $A(p,2pN)A-2$

- Online spectrum
SRC @ R³B/GSI

- Pioneering experiment with radioactive-ion beam
 May 2022 (A. Corsi et al.)
- R³B setup at GSI
- ^{16}C (^{12}C as ref.) at 1.25 GeV/nucleon
- First **fully exclusive** measurement $A(p,2pN)A-2$

Pioneering experiment with radioactive-ion beam

- **May 2022** (A. Corsi et al.)
- R³B setup at GSI
- ^{16}C (^{12}C as ref.) at 1.25 GeV/nucleon
- First **fully exclusive** measurement $A(p,2pN)A-2$
SRC @ R³B/GSI

- Pioneering experiment with radioactive-ion beam
 May 2022 (A. Corsi et al.)
- R³B setup at GSI
- ^{16}C (^{12}C as ref.) at 1.25 GeV/nucleon
- First **fully exclusive** measurement $A(p,2pN)A-2$

- Main reactions of interest:
 $^{16}\text{C}(p,2pn)^{14}\text{B}$ (np-pairs)
 $^{16}\text{C}(p,2pp)^{14}\text{Be}$ (pp-pairs)
- Correlation probability
Thank you!