

Recent results on heavy flavor and quarkonia from ALICE

E. Scomparin - INFN Torino (Italy) for the ALICE Collaboration

Introduction

Heavy quarks, a precise tool to study QGP properties and hadronization mechanisms

 Highlights from our menu today:
 J/ψ production and polarization, ψ(2S) production in Pb-Pb
 Charm spatial diffusion coefficient from R_{AA} and v₂ measurements
 Beauty vs charm energy loss from (non) prompt D
 Hadronization studies via charm baryon production in pp, p-Pb, Pb-Pb
 ... and much more!

□ Some specific features of the ALICE measurements

Detection of inclusive charmonium and bottomonium states down to zero p_T
 Open heavy flavor: extended studies of meson AND baryon states over a wide p_T range

Heavy flavor and quarkonium results from ALICE

Heavy flavor and quarkonium results from ALICE

4

time

bxb

b

Pre-eq.

c X C

C C

Chem. freeze-out

Quarkonium

- Early production (and binding) of heavy quark pairs
 Modification of spectral properties and possible dissociation in the QGP
- Recombination effects in the QGP and/or at phase boundary

T. Matsui and H. Satz, PLB 178(1986) 416 P. Braun-Munzinger and J. Stachel, PLB490(2000) 196 R. Thews et al., PRC63 (2001) 064905 A. Rothkopf, Phys. Rept. 858 (2020) 1

F. Prino and R.Rapp J.Phys.G 43 (2016) 9

Heavy flavor and quarkonium results from ALICE

Chem. freeze-out

Open heavy flavours

 Heavy quark interactions in the QGP: energy loss and its quark mass dependence, heavy quark diffusion and thermalization
 Hadron formation mechanisms and their dependence on the collision system (results from pp to Pb-Pb collisions) Hadron gas Mixed phase QGP

Pre-eq.

Y. Dokshitzer and D. Kharzeev, PLB 519 (2001) 199 D.Moore and H. Teaney, PRC71 (2005) 064904 F. Prino and R.Rapp J.Phys.G 43 (2016) 9

Heavy flavor and quarkonium results from ALICE

7

A Large Ion Collider Experiment

Quarkonium measurements
 Central barrel (ee, |y|<0.9)
 Muon spectrometer (μμ, 2.5<y<4)
 Coverage down to zero p_T

Open heavy flavours

 \Box Hadronic measurements (|y|<0.5)

 $D^{0} \rightarrow K^{-} \pi^{+} \quad D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$ $D^{+}_{s} \rightarrow \phi \pi^{+} \rightarrow K^{+} K^{-} \pi^{+}$ $D^{*+} \rightarrow D^{0} \pi^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$ $\Lambda^{+}_{c} \rightarrow K^{0}_{s} p \rightarrow \pi^{+} \pi^{-} p$ $\Lambda^{+}_{c} \rightarrow pK^{-} \pi^{+}$ $\Sigma^{0,++}_{c} \rightarrow \Lambda^{+}_{c} \pi^{-,+}$ $\Xi^{0}_{c} \rightarrow \Xi^{-} e^{+} \nu_{e}, \Xi^{-} \pi^{+}$ $\Xi^{+}_{c} \rightarrow \Xi^{-} \pi^{+} \pi^{+}$ $\Omega^{0}_{c} \rightarrow \Omega^{-} \pi^{+}$ $\Box \text{ Leptonic measurements (c, b \rightarrow \ell X) at forward and central y$

Quarkonia

PA – OTH session	J/ψ photoproduction and the production of dileptons via photon-photon interactions in hadronic Pb–Pb collisions measured with ALICE L. Massacrier , Tue 2.40 PM
PA – BLK session	Quarkonia production and elliptic flow in small systems measured with ALICE R. Sadek , Tue 10 AM
PA – HF session	Measurement of quarkonium production and polarization in pp and Pb-Pb collisions with ALICE X. Bai , Tue 9 AM
	$\psi(2S)$ production and nuclear modification factor in nucleus- nucleus collisions with ALICE H. Hushnud , Tue 10 AM

More details in

□ Rise of inclusive J/ψ R_{AA} at low p_T, stronger effect at y=0 → decisive signature of recombination
 □ Models include regeneration either at the freeze-out (SHMc) or during the medium evolution (TAMU)
 → Both in agreement with data at low p_T

 \Box Effect confirmed when looking at prompt J/ ψ production at midrapidity, clear centrality dependence

Inclusive $\psi(2S)$ production in Pb-Pb

Stronger suppression for ψ(2S) compared to J/ψ

 → sequential suppression for charmonia?

 Increasing trend of R_{AA} towards low p_T for ψ(2S)

 → Hint of ψ(2S) production via regeneration

 Compatible with midrapidity CMS results in common p_T range
 p_T dependence of R_{AA} reproduced by TAMU

□ Centrality dependence of $\psi(2S)/J/\psi$ described by TAMU and slightly underestimated by SHMc

LI-PREL-523330

First LHC

measurement

down to zero p_{T}

Inclusive J/ ψ polarization in Pb-Pb collisions

ALICE,

arXiv:2204.10171

 □ Study polarization wrt an axis orthogonal to the event plane, in the collision center of mass frame
 → orthogonal to *B* and *L*

□ Significant spin alignment observed for light vector mesons (*K*^{*0}, φ) (ALICE, PRL 125 (2020) 012301)

□ Centrality dependence → small but significant (3.5σ) polarization in 40-60% and 2<p_T<6 GeV/c
 □ p_T dependence → 3.9σ effect for 2<p_T< 4 GeV/c, 30-50%

ALICE, arXiv:2204.10684

Coherent J/ψ production in (semi)peripheral Pb-Pb

□ Centrality dependence of R_{AA} in p_T intervals
 → evidence for coherent production at low p_T
 □ p_T shape and cross sections compatible with a model that includes the effect of the overlap between the nuclei (W. Zha et al., PRC 99 (2019) 061901)

PC: arXiv:2204.10684 UPC: EPJC 81 (2021) 712, PLB 98 (2019) 134926

Ratio of coherent cross sections in Pb-Pb collisions with nuclear overlap (PC) over ultraperipheral (UPC) collisions

No evidence of modification of σ_{PC} in semicentral collisions with current experimental precision

Heavy flavor and quarkonium results from ALICE

Quarkonium news from pp collisions

^{0.3} [↑]/[°]² 0.25 ALICE Preliminary Pb-Pb, Vs_11 = 5.02 TeV, (30-50%) (JHEP 10 (2020) 141) p-Pb, Vs = 5.02, 8.16 TeV, (0-20%)-(40-100%) (PLB 780 (2018) 7-20) $1.5 < |\Delta \eta| < 5.0, 2.03 < y_{eff} < 3.53$ 0.15 pp, Vs_N = 13 TeV, (0-5%)-(40-100%) $1.5 < |\Delta \eta| < 5.0, 2.5 < y_{cms} < 4.0$ 0. 0.05 -0.05 -0. p_T (GeV/c) ALI-PREL-514634

- □ Strong collective effects on J/ψ already assessed in Pb-Pb
- □ p-Pb: significant flow for p_T>3 GeV/c (not explained by transport models)
- \square pp: no significant effect, integrated v₂ compatible with zero within 1.5σ

Self-normalized ratios of ψ(2S) and J/ψ exhibit a similar multiplicity dep. (ratio of ratios is flat)
 Agreement with PYTHIA 8, while comover models predict a suppression effect at large dN_{ch}/dη, not seen in the data

Open heavy flavours

More details in

Constraining hadronization processes with charm baryons in pp and p-Pb collisions with ALICE **J. Seo**, Tue 12.10 PM

Charm production: constraint to transport models and charm diffusion coefficient with ALICE **M. Völkl**, Tue 11.50 AM

Beauty production in heavyion collisions with ALICE at the LHC **S. Politanò**, Tue 2 PM

PA – HF

session

Heavy-flavour jet properties and correlations from small to large systems measured by ALICE **A. Da Silva**, Tue 2.20 PM

Charm quark transport and models

□ Most charm-quark transport models able to describe both the R_{AA} and v_2 → Use comparison to understand which physics effects are relevant → Use comparison to estimate the spatial diffusion coefficient

TAMU: PRL 124, 042301 (2020), DAB-MOD: PRC 96, 064903 (2017), LBT: PLB 777 (2018) 255-259, LIDO: PRC 98, 064901 (2018), Cat.: PRC 96, 044905 (2017), POWL.: EPJC 75 (2015) 3, 121 PHSD: PRC 93, 034906 (2016), MC@sHQ: PRC 91, 014904 (2015), LGR: EPJC 80 (2020) 7, 671

Charm quark energy loss

LIDO: PRC 98, 064901 (2018) LGR: EPJC 80 (2020) 7, 671

Radiative energy loss important to describe intermediate and high p_T \rightarrow Small impact on low p_T region

Heavy flavor and quarkonium results from ALICE

Estimating the spatial diffusion coefficient

□ Constraining the spatial diffusion coefficient via the data-to-model agreement → Using R_{AA} (with $\chi^2/ndf < 5$) and v_2 (with $\chi^2/ndf < 2$) non-strange D measurements → TAMU, MC@sHQ, LIDO, LGR, and Catania "selected"

Charm vs inclusive jets

□ D⁰ meson, 3<p_T<36 GeV/c
 □ Charged jets, anti-k_T algorithm with R=0.3
 □ Jet 5<p_T<50 GeV/c

- □ Hint of a higher R_{AA} of D⁰-jets compared to inclusive jets in Pb-Pb
- Comparison sensitive to
 - □ Difference between quark and gluon energy loss (Casimir colour effect)
 - □ Mass effects (dead cone)

Beauty vs charm: prompt vs non-prompt D⁰ R_{AA}

ALICE, arXiv: 2202.00815

□ Suppression of b → D⁰ observed □ $R_{AA b \rightarrow D0} > R_{AA c \rightarrow D0}$ at intermediate p_T □ R_{AA} (0-10%) < R_{AA} (30-50%)

□ Theory models that include collisional and radiative eloss describe the data within uncertainties

Ratio non-prompt/prompt R_{AA} for D mesons

Sensitive to effects that act differently on charm and beauty quarks

 \square p_T < 5 GeV/c : difference in shadowing / flow / decay kinematics

□ $p_T > 5 \text{ GeV}/c$: 3.9 σ above unity → beauty quarks undergo less suppression than charm quarks

- □ Test the double R_{AA} ratio with different LGR configurations
 - → The "valley" structure is mainly due to the formation of prompt D-mesons via charm-quark coalescence (iv)
 - → The significant enhancement of double ratio at high p_T is related to the mass dependent quark in-medium energy loss (i)

ALICE, arXiv: 2202.00815 LGR: EPJC 80 (2020) 671, EPJC 80 (2020) 1113

Λ_c/D^0 : pp collisions

→ PDG: 5 Λ_c, 3 Σ_c, 8 Ξ_c, 2 Ω_c
→ RQM: additional 18 Λ_c, 42 Σ_c, 62 Ξ_c, 34 Ω_c
(not yet measured)

M. He, R. Rapp, PLB 795 (2019) 117-121 □ Ratios underestimated at low p_T by models as PYTHIA 8 Monash, tuned to reproduce e⁺e⁻ results (e⁺e⁻ charm fragmentation functions)

 \rightarrow non-universal fragmentation of charm to hadrons ?

□ PYTHIA 8 with updated Colour Reconnection (CR)

modelling J.P. Christiansen, P. Z. Skands: JHEP 1508 (2015) 003

- □ CR with SU(3) weights and string length minimization
 - → "junction" topology enhances charm baryon production
- Catania model V. Minissale, S. Plumari, V. Greco: arXiv:2012.12001
 - □ Thermalised system of u,d,s and gluons assumed
 - Mixed hadron formation
 - \rightarrow Fragmentation
 - \rightarrow Coalescence, imposed as only mechanism for $p \rightarrow 0$

Statistical Hadronization Model and Relativistic Quark Model (SHM + RQM)

- □ Hadronization driven by statistical weights governed by hadron masses $(n_i \sim m_i^2 T_{\rm H} K_2(m_i/T_{\rm H}))$ at a hadronization temperature $T_{\rm H}$
- Strong feed-down from an augmented set of excited charm baryons

From pp to p-Pb: Λ_c/D^0 and charm fragmentation fractions

 $\Box \Lambda_c^+/D^0$ enhancement shifted to larger p_T in p-Pb

□ Charm fragmentation fractions measured including several states in pp collisions at $\sqrt{s_{NN}} = 5.02$ TeV (ALICE, PRD105(2022)L011103)

□ For p-Pb: measured for D⁰ and Λ_c , extrapolated to zero p_T with POWHEG+PYTHIA for D⁺ and D_s⁺, not measured for Ξ_c but evaluated assuming $R_{pPb}(\Lambda_c^+) = R_{pPb}(\Xi_c^+)$

$\Lambda_{\rm c}/{\rm D}^{\rm 0}$: moving across systems, pp, p-Pb, Pb-Pb

- □ p_T -integrated data do not favour an increase of the yield ratio with multiplicity → trend compatible with a constant function.
- □ Suggests that the increasing trend observed in specific p_T ranges comes from a re-distribution of p_T that acts differently for baryons and mesons

Conclusions

□ ALICE Run 1 + 2: several highlights and still investigating exciting topics. Among those:

Quarkonium

PRESENT

FUTURE

- \Box Study of recombination in the charmonium sector, now extended to $\psi(2S)$
- \Box First results on J/ ψ polarization with respect to event plane, small but significant effect
- \Box Large J/ ψ v₂ in Pb-Pb, significant signal in p-Pb but no evidence in pp

□ Open heavy flavours

- \Box Studies on thermalization and energy loss, estimate of crucial QGP parameters (D_s)
- □ Energy loss hierarchy, via charm-jet studies and non-prompt/prompt D⁰ production
- Detailed studies of charm baryon production, to shed light on anomalous enhancements seen in pp collisions

□ LHC Run 3 starting

□ Continuous readout at 50 kHz interaction rate for Pb-Pb collisions
 □ Target Pb-Pb integrated luminosity (run 3 + 4) → L_{int} ~ 13 nb⁻¹
 □ Improved tracking precision by a factor 3-6 (new Inner Tracker)

□ Longer-term plan: ALICE 3

→ Systematic measurements of (multi-)heavy-flavour hadrons

Heavy-ion physics at the LHC with detector upgrades for Runs 3 and 4 **S.Porteboeuf**, Thu 12.40 PM

Physics program of the ALICE 3 experiment for the LHC Runs 5 and 6 **R.Bailhache**, Thu 12.05 PM

Heavy flavor and quarkonium results from ALICE

Backup

$\Sigma_c^{0,+,++}$, $\Xi_c^{0,+}$, Ω_c^0 baryons in pp collisions

ALICE, PRL 128, 012001 ALICE, PRL 127, 272001 ALICE, JHEP 10 (2021) 159 ALICE:arXiv:2205.13993

□ Σ_c/D^0 well described by SHM+RQM, Catania and QCM, its enhancement partially accounts for large Λ_c^+/D^0 □ Ξ_c/D^0 significantly underestimated by models, while Ξ_c/Σ_c (not shown) in agreement with Monash (N.B. $D_s^+/(D^0 + D^+)$ is compatible with expectations from e^+e^- , effects above not directly related to s-quark content?) □ Ω_c/D^0 , better agreement with coalescence models, PYTHIA 8 underestimates even with CR-BLC effects (N.B. $BR(\Omega_c^0 \to \Omega^- \pi^+) = (0.51 \pm 0.07)\%$ not measured \to value from Y. Hsiao et al. EPJC 80, 1066 (2020) used to scale model predictions)

Reconstructed charm-baryon decays

- $\Lambda_c^+(udc) \rightarrow pK^-\pi^+, pK_s^0$
- $\Sigma_c^{0,++}(ddc,uuc) \rightarrow \Lambda_c^+\pi^{-,+}$
- $\Xi_c^0(dsc) \rightarrow \Xi^- e^+ \nu_e, \Xi^- \pi^+$
- $\Xi_c^+(usc) \rightarrow \Xi^-\pi^+\pi^+$
- $\Omega_c^0(ssc) \rightarrow \Omega^- \pi^+$

A brief detour

Polarization studies can be extended to other particles containing charm quarks
 First step recently carried out by studying D*+ polarization in pp collisions

\Box Measure spin density matrix ρ_{00}

$$\frac{dN}{d\cos\theta^*} = N_0 \times [(1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta^*]$$

□ Deviations from $\rho_{00} = 1/3$ signal a net spin alignment

Separation of prompt and non-prompt component
 Prompt component unpolarized, while non-prompt component from b-hadron decays exhibit a clear polarization

- → Effect seen and in agreement with PYTHIA 8 + EVTGEN
- Next step: measurements in Pb-Pb collisions, to search for effects related to B and/or L

Charm hadronization in pp: baryons vs mesons

ALICE, Phys. Rev. C 104 (2021) 054905

 $0.113 \pm 0.013 \pm 0.006$ (EPJC75 (2015)19)

LEP average

 \Box Baryon-to-meson ratios underestimated at low p_T by models as PYTHIA 8 Monash, tuned to reproduce e^+e^- results (e^+e^- charm fragmentation functions)

 \Box Enhancement with respect to PYTHIA 8 at low $p_{\rm T}$ also observed in the beauty sector by LHCb

 \Box Points towards further hadronization mechanisms \rightarrow non-universal fragmentation functions \rightarrow Campaign of measurements of various baryon resonances in pp