

Highlights from the NA61/SHINE

Szymon Pulawski for NA61/SHINE

Upgraded NA61/SHINE detector

Fixed target experiment located at the CERN SPS accelerator

coverage of the full forward hemisphere, down to $p_{\rm T} = 0$

NA61/SHINE 2-dimensional scan

NA61/SHINE performed a 2D scan in **collision energy and system size** to study the phase diagram of strongly interacting matter

Onset of deconfinement

Qualitatively similar energy dependence is seen in p+p, Be+Be, Ar+Sc and Pb+Pb Magnitude of T increases with the system size

Kaons are only weakly affected by rescattering and resonance decays during the post-hydro phase (at SPS and RHIC energies).

Connected temperature of the freeze-out surface and not the early-stage fireball

Onset of deconfinement: horn

Plateau like structure visible in p+p, Be+Be and Ar+Sc Ar+Sc is higher than p+p and Be+Be

Good measure of the strangeness to entropy ratio which is different in the confined phase (hadrons) and the QGP (quarks, antiquarks and gluons).

Probe of the onset of deconfinement.

The enhancement recalculated based on the new E reference from NA61/SHINE

System size dependence

K⁺/ π ⁺ and *T*vs the system size at 150*A* GeV/*c*

None of the models reproduces K^+/π^+ ratio or T for whole $\langle W \rangle$ range

PHSD: Eur.Phys.J.A 56 (2020) 9, 223, arXiv:1908.00451 and private communication; SMASH: J.Phys.G 47 (2020) 6, 065101 and private communication; UrQMD and HRG: Phys. Rev. C99 (2019) 3, 034909 SMES: Acta Phys. Polon. B46 (2015) 10, 1991 - recalculated p+p: Eur. Phys. J. C77 (2017) 10, 671 Be+Be: Eur. Phys. J. C81 (2021) 1, 73 Ar+Sc: NA61/SHINE preliminary Pb+Pb: Phys. Rev. C66, 054902 (2002)

Search for critical point

Expected: non-monotonic behavior of CP signatures

Multiplicity and net-charge fluctuations in p+p, Be+Be and Ar+Sc

No structure indicating critical point

$$\kappa_{1} = \langle N \rangle$$

$$\kappa_{2} = \langle (\delta N)^{2} \rangle = \sigma^{2}$$

$$\kappa_{3} = \langle (\delta N)^{3} \rangle = S\sigma^{3}$$

$$\kappa_{4} = \langle (\delta N)^{4} \rangle - 3 \langle (\delta N)^{2} \rangle^{2} = K\sigma^{4}$$
where:
$$N - \text{multiplicity}; \, \delta N = N - \langle N \rangle$$

$$\sigma - \text{standard deviation}$$

$$S - \text{skewness}; K - \text{kurtosis}$$

Negatively charge κ_2/κ_1 : increasing difference between small systems (p+p and Be+Be) and a heavier system (Ar+Sc) with collision energy

Net-charge κ_3/κ_1 :increasing difference between Be+Be and other systems (p+p and Ar+Sc) with collision energy

 κ_4/κ_1 : consistent values for all measured systems at given collision energy

Proton and charge hadron intermittency in Ar+Sc and Pb+Pb collisions

$$F_r(M) = \frac{\left\langle \frac{1}{M} \sum_{m=1}^M n_m (n_m - 1) \dots (n_m - r + 1) \right\rangle}{\left\langle \frac{1}{M} \sum_{m=1}^M n_m \right\rangle^r},$$

where $\langle \ldots \rangle$ denotes averaging over events, M the number of cells

Statistically independent points, cumulative variables No indication of critical point in these analyses (power-law scaling $F_r(M) \sim M^{\phi_r}$)

Symmetric Levy HBT correlations

The Levy stability parameter α describes shape of the source 3D Ising model with random external field predicts $\alpha = 0.5 \pm 0.05$ at critical point

Highlights from strangeness production in p+p

E production in inelastic p+p collisions at 158 GeV/c

New results on K⁺, K⁻ (preliminary) and K_S^0 from high statistic p+p data

K[±]: almost 20 times larger dataset than previously published results (Eur.Phys.J.C 77 (2017), 671)

 K_S^0 mean multiplicity: 0.162±0.001±0.011

Model predictions deviate by up to 20% from the measurements — best predictions from EPOS 1.99.

K*(892)^o in p+p at 40-158 GeV/c

K*/K⁻ or K*/K⁺ → time between chemical and kinetic freeze-outs, properties of hadron gas phase
STAR, PR C71, 064902, 2005;
C. Blume, APP B43, 577, 2012

$$\frac{K^{*}}{K}\Big|_{kinetic} = \frac{K^{*}}{K}\Big|_{chemical} e^{-\frac{\Delta t}{\tau}}$$
A+A p+p

GCE: good fit (unexpectedly!) CE: good fit only with ϕ meson excluded

NA61 K*: EPJ C80, 5, 460, 2020; EPJ C82, 4, 322, 2022

Ξ production in inelastic p+p collisions at 158 GeV/c

see the talk by P. Podlaski on Tuesday

The only results on Ξ^- and $\overline{\Xi}^+$ production in *p*+*p* at SPS energy Strong suppression of $\overline{\Xi}^+$ production: $\langle \overline{\Xi}^+ \rangle / \langle \Xi^- \rangle = 0.24 \pm 0.01 \pm 0.05$

E production in inelastic p+p collisions – model comparison

Eur.Phys.J.C 80 (2020) 9, 833

$\Xi(1530)^{0}$ production in inelastic p+p collisions at 158 GeV/c

see the talk by P. Podlaski on Tuesday

The only results on $\Xi(1530)^0$ production in *p*+*p* at the SPS energy

The second result on $\Xi(1530)^0$ production in p+p (ALICE at 7 TeV Eur.Phys.J.C 75 (2015) 1) Suppression of $\overline{\Xi}(1530)^0$ production: $\langle \overline{\Xi}(1530)^0 \rangle / \langle \Xi(1530)^0 \rangle = 0.40 \pm 0.03 \pm 0.05$

$\Xi(1530)^{0}$ production in inelastic p+p collisions at 158 GeV/c

see the talk by P. Podlaski on Tuesday

HRG model in the CE formulation and p+p data

Eur.Phys.J.C 81 (2021) 10, 911

Fit by different variants of the HRG model (THERMAL-FIST1.3 Comput.Phys.Commun.244
(2019)295):
Canonical Ensemble with fixed γs=1
Canonical Ensemble with fitted strangeness saturation parameter γs

Significant discrepancies of the fitted parameters The statistical model fails when fixed γ_s

The fit with free γ_s finds $\gamma_s = 0.434 \pm 0.028$ and reproduces the measurements well - a suppression of strange particle production in *p*+*p* collisions at CERN SPS energies

NA61/SHINE in 2022-2025

NA61/SHINE program for 2022-2024

Upgrade almost completed First Pb+Pb data taking in autumn 2022

What is the mechanism of open charm production? How does the onset of deconfinement impact open charm production? How does the formation of quark gluon plasma impact J/ψ production? To answer these questions the mean number of charm quark pairs, $\langle c\bar{c} \rangle$, produced in A+A collisions has to be known. Up to now the corresponding experimental data does not exist and NA61/SHINE will perform this measurement in the near future.

SPSC-P-330-ADD-10

- 2D scan in system size and collision energy was completed in 2017 with Xe+La data
- Analysis ongoing for p+p, Be+Be, Ar+Sc, Xe+La and Pb+Pb data
- No horn in Ar+Sc collisions
- Unexpected system size dependence: (p+p ≈ Be+Be) ≠ (Ar+Sc ≠ Pb+Pb)
- No convincing indication of CP
- New and unique results on K+, K-, K⁰_S, K*, Ξ –, Ξ⁺, Ξ(1530)⁰ and Ξ(1530)⁰ production in p+p interactions
- NA61/SHINE program with measurements of open charm production in 2022-2025

- P. Podlaski, Tuesday 15:20, "Results on system size dependence of strangeness production in the CERN SPS energy range from NA61/SHINE"
- N. Davis , Wednesday 9:40, "Assessing critical point signatures through proton intermittency in NA61/SHINE"
- Posters:
 - T. Czopowicz, "Search for critical point in NA61/SHINE (POS-BLK-11)"
 - A. Tefelska, "Mesonic strange resonances in p+p collisions at SPS energies (POS-RES-04)"
 - A. Shukla, "Identified hadron spectra in high-statistics p+p collisions at 158 GeV/c (POS-OTH-02)"

Thank you

Strangeness production in p+p at 158 GeV/c

Strangeness enhancement factors

Eur.Phys.J.C 80 (2020) 9, 833

Fixed target experiment located at the CERN SPS accelerator

Beams:

- ions (Be, Ar, Xe, Pb)
 - p_{beam} =13A–150A GeV/c
- hadrons (п, К, р)
 *p*_{beam}=13–400 GeV/*c*
- $\sqrt{s_{NN}} = 5.1 16.8$ (27.4) GeV

Large acceptance hadron spectrometer –

coverage of the full forward hemisphere, down to $p_{\rm T} = 0$

Diagram of high-energy nuclear collisions

Hypothetical domains of hadron-production dominated by:

- resonance creation and decays
- string creation and decays

0.1

 quark-gluon plasma formation and hadronisation

Transition from resonances to strings

Transition from resonances to strings

Rates of increase of K^+/π^+ and T change sharply in p+p collisions at SPS energies

The fitted change energy is ≈7 GeV close to the energy of the onset of deconfinement ≈ 8 GeV

Models assuming change from resonances to string production mechanism show similar trend

Exclusion plots for parameters of simple power-law model

using statistically independent points and cumulative variables

The predicted intermittency index for a system freezing out at the QCD critical endpoint corresponds to the 3-D Ising universality class, to which the phase transition is expected

NA61/SHINE in 2021-2024

NA61/SHINE program for 2021-2024

- What is the mechanism of open charm production?
- How does the onset of deconfinement impact open charm production?
- How does the formation of quark gluon plasma impact J/ψ production?

To answer these questions mean number of charm quark pairs, $\langle c\bar{c} \rangle$, produced in A+A collisions has to be known. Up to now corresponding experimental data does not exist and only NA61/SHINE can perform this measurement in the near future.

Foreseen NA61/SHINE resolution is sufficient to answer addressed questions

Detector upgrade during LS2

