luctuations of conserved charges and correlations

Anar Rustamov

a.rustamov@gsi.de

Outline

- Phase diagram and fluctuations
 - Importance of baselines
 - Correlations in rapidity space
- Experimental results and their interpretations
 - The search for critical phenomena
 - The quest for proton clusters
 - Other ideas
- Conclusions

Phase diagram and fluctuations

A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Nature 561, 321–330 (2018) H. T. Ding et al [HotQCD], arXiv:1903.04801, A. Bazavov et al [HotQCD], arXiv:1812.08235

decoding the phase structure of matter with E-by-E fluctuations

A. Rustamov, SQM 2022, Busan, Republic of Korea, 13-17 June, 2022

E-by-E fluctuations are predicted within **Grand Canonical Ensemble**

 κ_n - cumulants (measurable in experiment) $\hat{\chi}_{n}^{B}$ - susceptibilities (e.g. from IQCD)

Cumulants and minimal baseline

$$\Im \Delta N = N_B - N_B$$

 r^{th} order cent

advantage: sensitive to small (critical) signals Ģ disadvantage: sensitive to any non-critical contributions Ş

 $\kappa_n(N_1)$

minimal baseline: Ideal Gas EoS + GCE

particles (Poisson)

A. Rustamov, SQM 2022, Busan, Republic of Korea, 13-17 June, 2022

 $f_{\bar{R}}$ occurs with probability $p(\Delta N)$ (measured)

tral moment:
$$\mu_r = \sum_{\Delta N} (\Delta N - \langle \Delta N \rangle)^r p(\Delta N)$$

 \Im first 4 cumulants: $\kappa_1 = \langle \Delta N \rangle$, $\kappa_2 = \mu_2$, $\kappa_3 = \mu_3$, $\kappa_4 = \mu_4 - 3\mu_2^2$

$$\frac{B - N_{\bar{B}}}{VT^3} = \frac{1}{VT^3} \frac{\partial^n ln Z(V, T, \mu_B)}{\partial (\mu_B / T)^n} \equiv \hat{\chi}_n^B$$

net-particles (Skellam)

$$\frac{\kappa_{2m}}{\kappa_{2n}} = 1, \quad \frac{\kappa_{2m}}{\kappa_{2n+1}} = \frac{\langle N \rangle + \langle \bar{N} \rangle}{\langle N \rangle - \langle \bar{N} \rangle}$$

Results from LQCD

 χ^B_2 $\neq \chi_4^B/\chi_2^B$: significant reduction compared to HRG in GCE (for T > 150 MeV) $\chi_{5(6)}^B / \chi_{1(2)}^B$: (progressively) negative sign towards lower energies (probe of crossover)

In LQCD calculations

volume is fixed ğ

charge conservations are imposed on the averages

P. Braun-Munzinger, AR., J. Stachel, NPA 960 (2017) 114 V. Skokov, B. Friman, and K. Redlich, Phys.Rev. C88 (2013) 034911

A. Rustamov, SQM 2022, Busan, Republic of Korea, 13-17 June, 2022

In experiments

- volume fluctuates from event to event
- charge is conserved in each event

Prerequisite for improved baseline

ideal gas + baryon number conservation in 4π

construction of proper baseline is essential for extracting the true signal

A. Rustamov, SQM 2022, Busan, Republic of Korea, 13-17 June, 2022

LQCD

Details of implementation

$$Z_{B}(V,T) = \sum_{N_{B}=0}^{\infty} \sum_{N_{\bar{B}}=0}^{\infty} \frac{(\lambda_{B} z_{B})^{N_{B}}}{N_{B}!} \frac{(\lambda_{\bar{B}} z_{\bar{B}})^{N_{\bar{B}}}}{N_{\bar{B}}!} \delta(N_{B} - N_{\bar{B}} - B) = \left(\frac{\lambda_{B} z_{B}}{\lambda_{\bar{B}} z_{\bar{B}}}\right)^{\frac{B}{2}} I_{B}(2 z \sqrt{\lambda_{B} \lambda_{\bar{B}}})$$

B net baryon number, conserved in each event I_{B} modified Bessel function of the first kind single particle partition functions for baryons, anti baryons $Z_B, Z_{\bar{R}}$ auxiliary parameters for calculating cumulants of baryons, anti baryons $\lambda_R, \lambda_{\bar{R}}$

+

baryon number conservation (CE partition function)

Input from experiments

baryon rapidity distributions $\stackrel{>}{=}$ measured (canonical) $\langle N_{R} \rangle$, $\langle N_{\bar{R}} \rangle$

A. Rustamov, SQM 2022, Busan, Republic of Korea, 13-17 June, 2022

- P. Braun-Munzinger, B. Friman, K. Redlich, AR., J. Stachel, NPA 1008 (2021) 122141 A. Bzdak, V. Koch, V. Skokov, Phys.Rev.C 87 (2013) 1,014901

$$\langle N_B \rangle = \lambda_B \frac{\partial \ln Z_B}{\partial \lambda_B} \Big|_{\lambda_B, \lambda_{\bar{B}} = 1} = z \frac{I_{B-1}(2z)}{I_B(2z)}$$

Metropolis algorithm (Simulated annealing)

AR., P. Braun-Munzinger, J. Stachel, QM 2022

works for arbitrary distributions

A. Rustamov, SQM 2022, Busan, Republic of Korea, 13-17 June, 2022

Improved baseline(s)

P. Braun-Munzinger, B. Friman, K. Redlich, AR., J. Stachel, NPA 1008 (2021) 122141

extra suppression due to local baryon number conservation introduced via Choleski decomposition and Metropolis algorithm AR., P. Braun-Munzinger, J. Stachel, QM 2022, previous version: arXiv:1907.03032

A. Rustamov, SQM 2022, Busan, Republic of Korea, 13-17 June, 2022

$$-\langle y_B \rangle \langle y_{\bar{B}} \rangle$$

$$\sigma_{y_{\bar{B}}}$$

- correlation coefficient
- ρ = 0: Global baryon number conservation $\rho \neq 0$: Local baryon number conservation

$$\frac{1}{2} - \frac{\alpha_{\bar{B}}}{\alpha_{\bar{B}}} \Big)^2$$

$$\frac{\kappa_2(B-\bar{B})}{\langle n_B+n_{\bar{B}}\rangle} = 1 - \alpha$$

 $\langle n_R \rangle$ - inside acceptance $\langle N_R \rangle$ - in 4π

experimental results

NA61/SHINE@CERN SPS (5-17 GeV)

HADES@GSI SIS18 (few GeV)

probing the matter produced at energy scales from several GeV to several TeV

A. Rustamov, SQM 2022, Busan, Republic of Korea, 13-17 June, 2022

STAR@BNL RHIC (3 - 200 GeV)

10

ALICE@ CERN LHC (few TeV)

Results at LHC energies (ALICE)

ALICE: Phys. Lett. B 807 (2020) 135564 AR., NPA 967 (2017) 453-456

Hing (Lund String Fragmentation) results are in conflict with the ALICE data

A. Rustamov, SQM 2022, Busan, Republic of Korea, 13-17 June, 2022

CE baseline: P. Braun-Munzinger, B. Friman, K. Redlich, AR., J. Stachel, NPA 1008 (2021) 122141

 $\overset{\scale}{=}$ Alice data: best description with $\rho = 0.1$ ($\Delta y_{corr} = 12$) \leftrightarrow Global baryon number conservation

The experimental search for crossover transition

STAR: Phys.Rev.Lett. 127 (2021) 26, 262301

First try to measure the cross-over signals via fluctuations of <u>net-protons</u> (LQCD - net-baryons) no consistent trend between 54.4 and 200 GeV data (both are negative in LQCD) baryon number conservation also leads to negative values for κ_6/κ_2

calls for higher statistics for firm conclusions

A. Rustamov, SQM 2022, Busan, Republic of Korea, 13-17 June, 2022

14 June, 14:00, Ashish Pandav

15 June, 14:30, Ho San Ko

Energy excitation function of κ_4/κ_2 in central Au-Au collisions

HADES: Phys.Rev.C 102 (2020) 2, 024914 **STAR**: Phys.Rev.Lett. 126 (2021) 9, 092301

a dip in the excitation function is generic

M. Stephanov, PRL102.032301(2009), PRL107.052301(2011) M.Cheng et al, PRD79.074505(2009)

STAR: Phys.Rev.Lett. 126 (2021) 9, 092301

non-monotonic behaviour with a significance of 3.1σ relative to Skellam expectation

Energy excitation function of κ_4/κ_2 in central Au-Au collisions

HADES: Phys.Rev.C 102 (2020) 2, 024914 **STAR**: Phys.Rev.Lett. 126 (2021) 9, 092301

higher statistics is needed for unambiguous conclusions

A. Rustamov, SQM 2022, Busan, Republic of Korea, 13-17 June, 2022

a dip in the excitation function is generic

M. Stephanov, PRL102.032301(2009), PRL107.052301(2011) M.Cheng et al, PRD79.074505(2009)

STAR: Phys.Rev.Lett. 126 (2021) 9, 092301

non-monotonic behaviour with a significance of 3.1σ relative to Skellam expectation

CE Baseline: P. Braun-Munzinger, B. Friman, K. Redlich, AR, J. Stachel, NPA 1008 (2021) 122141 no statistically significant difference between the data and the canonical baseline (KS test: 1.2σ , χ^2 test: 1.5σ)

see also: V. Vovchenko, V. Koch, Ch. Shen, Phys.Rev.C 105 (2022) 1,014904

Search for self-similarity

$$F_2(M) = \frac{\left\langle \frac{1}{M^2} \sum_{i=1}^{M^2} n_i (n_i - 1) \right\rangle}{\left\langle \frac{1}{M^2} \sum_{i=1}^{M^2} n_i \right\rangle^2} \qquad \begin{array}{l} \delta \text{ - width of th} \\ n_i \text{ - number of } \end{array}$$

near the QCD critical point (assuming 3D Ising universality class) $F_2(M) \sim (M^2)^{\phi_2}, \ \phi_2 = 5/6$

he i^{th} bin of particles in i^{th} bin

no indication of power-low behaviour

14 June, poster session, Tobiasz Czopowicz

15 June, 09:40, Nikolaos Davis

the quest for proton clusters

A. Rustamov, SQM 2022, Busan, Republic of Korea, 13-17 June, 2022

Results from HADES, Au-Au $\sqrt{s_{NN}}$ =2.4 GeV

$$\kappa_2 = \kappa_1 + C_2$$

$$\rho_2(y_1, y_2) = \rho(y_1)\rho(y_2) + C_2(y_1, y_2)$$
$$\langle n^2 \rangle - \langle n \rangle^2 = \langle n \rangle + \int C_2(y_1y_2)dy_1dy_2$$

integrated correlation function: C_n

B. Ling, M. Stephanov, PRC 93 (2016) 034915 A. Bzdak, V. Koch, N. Strodthoff, PRC 95 (2017) 054906

A. Rustamov, SQM 2022, Busan, Republic of Korea, 13-17 June, 2022

 \Im $\langle N_p \rangle$ - mean number of protons in selected $y_0 \pm \Delta y$ $\checkmark \Delta y = 0.1, 0.2, 0.3, 0.4, 0, 5$

large values for integrated correlation functions

- do data imply multi-cluster formation? Ģ
- Ş what is the mechanism behind?

The quest for proton clusters

proton clusters and cumulants A. Bzdak, V. Koch, V. Skokov, Eur. Phys. J.C 77 (2017) 5, 288

canonical Ensemble + Metropolis algorithm AR., P. Braun-Munzinger, J. Stachel, QM 2022 introducing correlations between baryons

 \mathbb{I} for large values of ρ and small values of Δy it is more probable to treat protons in pairs this process increases the finally measured proton number fluctuations

A. Rustamov, SQM 2022, Busan, Republic of Korea, 13-17 June, 2022

CE baseline: P. Braun-Munzinger, B. Friman, K. Redlich, AR., J. Stachel, NPA 1008 (2021) 122141

The quest for proton clusters

proton clusters and cumulants A. Bzdak, V. Koch, V. Skokov, Eur. Phys. J.C 77 (2017) 5, 288

canonical Ensemble + Metropolis algorithm AR., P. Braun-Munzinger, J. Stachel, QM 2022 introducing correlations between baryons

 \mathbb{I} for large values of ρ and small values of Δy it is more probable to treat protons in pairs this process increases the finally measured proton number fluctuations

A. Rustamov, SQM 2022, Busan, Republic of Korea, 13-17 June, 2022

CE baseline: P. Braun-Munzinger, B. Friman, K. Redlich, AR., J. Stachel, NPA 1008 (2021) 122141

The quest for proton clusters

AR., P. Braun-Munzinger, J. Stachel, QM 2022 CE baseline: P. Braun-Munzinger, B. Friman, K. Redlich, AR., J. Stachel, NPA 1008 (2021) 122141

A. Rustamov, SQM 2022, Busan, Republic of Korea, 13-17 June, 2022

correlated proton production enhances $\kappa_3(p)/\kappa_2(p)$ and $\kappa_4(p)/\kappa_2(p)$ wrt CE baseline

Comparison to STAR data

 $\frac{\delta}{2}$ the precision of the data however, does not exclude the scenario with $\rho = 0.8$ at the current precision of the data there is no evidence for critical behaviour!

- Figure 4.2. For the start of t

additional ideas

A. Rustamov, SQM 2022, Busan, Republic of Korea, 13-17 June, 2022

(anti)proton-(anti)deuteron correlations

STAR

- Baryon number conservation reproduces the data
- Both, model A and model B, fail to follow the data
- UrQMD+phase space coalescence model is consistent with the data

ALICE

- Baryon number conservation reproduces the data
- Model A does not fit the data

A. Rustamov, SQM 2022, Busan, Republic of Korea, 13-17 June, 2022

 $\langle (n_a - \langle n_a \rangle) \rangle \langle (n_b - \langle n_b \rangle) \rangle$

 $\sigma_a \sigma_b$

- Toy Coalescence **Model A**: statistically from correlated p, n
- Toy Coalescence **Model B**: statistically from uncorrected n, p
- Zuzana. Feckovà et al., Phys.Rev.C 93 (2016) 5,054906

ALICE: arXiv:2204.10166

14 June, poster session, Debasish Mallick

14 June, 10:50, Mario Ciacco

Cumulants as probes of magnetic field and missing states

 $\hat{\chi}_{2}^{X=B,Q,S} =$

- collisions

H.-T. Ding, S.-T. Li, Q. Shi, X.-D. Wang, arXiv: 2104.06843 Jun-Hong Liu, QM2022

A. Bazavov et al., Phys. Lett. B 737 (2014) 210–215, arXiv:1404.4043 [hep-lat] J. Goswami et al., Acta Phys. Polon. Supp. 14 (2021) 251, arXiv:2011.02812 [hep-lat]

A. Rustamov, SQM 2022, Busan, Republic of Korea, 13-17 June, 2022

$$\frac{\partial^2 ln Z(V, T, \mu_{B,Q,S})}{\partial \left(\mu_X/T\right)^2} \qquad \qquad \hat{\chi}_1^{XY} = \frac{1}{VT^3} \frac{\partial^2 ln Z(V, T, \mu_B)}{\partial \left(\mu_X/T\right) \partial \left(\mu_Y}}$$
$$N_X - \langle N_X \rangle \right)^2 \qquad \qquad \qquad \langle \left(N_X - \langle N_X \rangle\right) \left(N_Y - \langle N_Y \rangle\right) \langle N_Y - \langle N_Y \rangle \rangle \right)$$

second order fluctuations/correlations of conserved charges are strongly deteriorated by the presence of magnetic field experimentally measurable to probe the magnetic field in nuclear

14 June, poster session, Jun-Hong Liu

Second Content of Second Co probes of missing strange/charmed hadrons

Conclusions

 \mathbf{M} The ALICE data exclude short range $B\overline{B}$ correlations \checkmark The data are best described with the correlation coefficient $\rho = 0.1 \leftrightarrow \Delta y_{corr} = 12$ If This behaviour is at odds with the Lund String Fragmentation model for baryon production The HADES data on integrated correlation functions show non-linear dependences on acceptance Indication of multi-proton clustering? **M** The STAR data at 7.7 GeV show no strong evidence for clustering \mathbf{M} The energy excitation function of κ_4/κ_2 of (net-)protons, within the experimental uncertainties, is consistent with the non-critical baseline (ideal gas + canonical Ensemble) \mathbf{M} The measured trend of κ_6/κ_2 from STAR at 200 GeV is consistent with the LQCD predictions for cross-over, however this is not the case for 54.4 GeV data The intermittency analysis from NA61/SHINE does not exhibit the searched for power-law behaviour for critical point

the current and near future data from ALICE, STAR, HADES/CBM and NA61/SHINE will be a game changer_

A. Rustamov, SQM 2022, Busan, Republic of Korea, 13-17 June, 2022

Baryon production in string models

ALICE: Phys. Lett. B 807 (2020) 135564 AR., NPA 967 (2017) 453-456

Hjing (Lund String Fragmentation) results are in conflict with the ALICE data

A. Rustamov, SQM 2022, Busan, Republic of Korea, 13-17 June, 2022

Lund String Fragmentation

baryon production $q\bar{q}$ pair is replaced by $qq-\bar{q}\bar{q}$ pair

diquark-antidiquark popcorn mechanism

induces short range correlations in rapidity space

B. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand Phys.Rept. 97 (1983) 31-145

$\kappa_2(p-\bar{p})$ measurements are essential to constrain baryon production mechanisms

27