Elliptic and triangular flow of (multi-)strange hadrons and ϕ mesons in BES-II energies at STAR

Li-Ke Liu
for the STAR Collaboration
Central China Normal University

SQM 2022 - The 20th International Conference on Strangeness in Quark Matter
Outline

• Motivation
• Experimental Setup
• Analysis Method
• Results and Discussion
• Summary and Outlook
Motivation

- RHIC 200 GeV and LHC
 - Small viscosity, high temperature
 - Evidence of Quark-Gluon Plasma

- Beam energy scan program
 - Search for Critical Point
 - Locate the first-order phase boundary

Motivation

Heavy ion collisions: Initial spatial anisotropy \rightarrow Pressure gradient \rightarrow Anisotropic flow

$$E \frac{d^3N}{dp^3} = \frac{1}{2\pi} \frac{d^2N}{p_\perp dp_\perp dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos \left[n(\phi - \psi_{RP}) \right] \right)$$

Self-quenching effect

- v_2 is sensitive to constituent interactions and degree of freedom
- v_3 is sensitive to event-by-event fluctuations in the overlap region
- ϕ-meson and strange hadrons less affected by the hadronic phase
 - Small hadronic interaction cross sections
 - Freeze-out earlier than other light hadrons

Experimental Setup

- The STAR Detector
 - Full 2π azimuthal coverage
 - Large acceptance at mid-rapidity
 - Excellent particle identification

- Upgrade of inner-TPC
 - Better track quality
 - Larger acceptance ($|\eta| < 1.5$)

- Larger acceptance
- Excellent PID with uniform efficiency
- Modest rates

- iTPC, EPD & eTOF upgrades completed
- All are in data-taking for BES-II program
Event Plane Calculation

- The n^{th} harmonic event plane was calculated as:

$$\vec{Q} = \begin{pmatrix} Q_y \\ Q_x \end{pmatrix} = \begin{pmatrix} \sum_i w_i \sin(n\phi_i) \\ \sum_i w_i \cos(n\phi_i) \end{pmatrix} \quad \Psi_n = \tan^{-1}\left(\frac{\sum_i w_i \sin(n\phi_i)}{\sum_i w_i \cos(n\phi_i)}\right)/n$$

- Since finite multiplicity limits the estimation of the reaction plane, this will bring resolution:

$$R_n = \left\langle \cos \left[n \left(\Psi_{n,EP} - \Psi_{RP} \right) \right] \right\rangle \quad R_{n,sub} = \sqrt{\left\langle \cos \left[n \left(\Psi_{n,east} - \Psi_{n,west} \right) \right] \right\rangle}$$

STAR detector upgrades and higher statistics:

- 11% improvement of 2nd EP resolution
- Typical 3rd EP resolution achieved and first v_3 measurement

Prabhupada, 6/14 5:10 pm, POS-BLK-10
Particle Identification

- Good particle identification capability based on TPC and TOF
Decay Particle Reconstruction

- K_s^0, Λ, $\bar{\Lambda}$, Ξ^\pm, Ω^\pm are reconstructed by KF particle package
 - background described by first order polynomial

- ϕ-mesons are reconstructed by K^+K^- channel
 - background estimated by using mixed event method

• Clear mass ordering of $v_2(p_T)$ when $p_T < 1.5$ GeV/c

• Particles grouped according to hadron type (baryon or meson) when $p_T > 1.5$ GeV/c
• Weak centrality dependence for v_3

Event-by-event fluctuation is the dominant source
Test of NCQ Scaling at 19.6 GeV

NCQ scaling of v_2

- NCQ scaling of v_2 (v_3) holds within 10(15)% for anti-particles, 20(30)% for particles. Quantify the NCQ scaling -> benefit from enhanced statistics of BES-II.
- Indicating the collective flow has been built up in the partonic stage.
- NCQ scaling of anti-particles is better than particles: produced vs. transported quarks.

NCQ scaling of v_3
Test of NCQ Scaling at 14.6 GeV

- NCQ scaling holds at 20% level
v2 results at 3 GeV

- At this energy, $\mu_B \sim 750$ MeV, high baryon density region
- The values of v_2 for all particles are negative, and the NCQ scaling is absent
- The data can be qualitatively reproduced by baryonic mean-field transport models

disappearance of partonic collectivity and likely dominated by baryonic interactions

Summary

• NCQ scaling of v_2 and v_3 holds well at 19.6 GeV
 - Signature of partonic collectivity
 - Difference between transported and produced quarks

• NCQ scaling is absent at 3 GeV
 - Medium likely dominated by baryonic interactions
The data taking of BES-II has been finished, enhanced statistics, upgraded detectors

- Precise measurements of multi-strange hadron and ϕ meson v_n

- Explore the QCD phase diagram with BES-II 3-20 GeV datasets

Thank you for your attention!