Chiral Magnetic Effect and Relativistic Heavy-Ion Collisions

Lecture in the student day
Strangeness in Quark Matter 2022
Busan, South Korea
June 12, 2022

Ho-Ung Yee
(University of Illinois, Chicago)
Suggested Reviews

- Kharzeev -1312.3348 - introduction and history of CME
- Fukushima - 1209.5064 - early anecdotes and conceptual issues
- Kharzeev-Liao-Voloshin-Wang -1511.04050 - comprehensive
- CME Task Force Report -1608.00982 - concise summary
- Kharzeev-Liao -2102.06623 - review in Nature Physics
- Hattori-Huang -1609.00747 - broad topics
- Li-Wang - 2002.10397 - review of experiments

The lecture will be focused on the basics, aiming to motivate you to search deeper in literature.
Plan

• Chiral Symmetry of QCD and Chiral Anomaly
• Chiral Magnetic Effect (CME) - Theory
• CME in Heavy-Ion Collisions - Experiments
• Chiral Magnetic Wave (CMW)
• Questions and Discussions
Relativistic Massless Fermions: Helicity

\[\mathbf{S} \, \uparrow \circlearrowright \mathbf{p} \]

- **Helicity**: \(h = \mathbf{S} \cdot \mathbf{p} = \pm \frac{\hbar}{2} \) :
 \(h = + \hbar/2 \) (Right-Handed)
 \(h = - \hbar/2 \) (Left-Handed)

- Under the parity \(\mathbf{x} \rightarrow - \mathbf{x} \) transformation (P),
 \(\mathbf{S} \rightarrow -\mathbf{S} \) and \(\mathbf{p} \rightarrow -\mathbf{p} \), and \(h \) is P-odd

- Any observable that correlates \(\mathbf{S} \) and \(\mathbf{p} \) breaks P
QCD Quark Field: \(\Psi = (\Psi_R, \Psi_L) \) (Dirac)

<table>
<thead>
<tr>
<th>(\Psi_R)</th>
<th>(\Psi_L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-handed Weyl field</td>
<td>L-handed Weyl field</td>
</tr>
</tbody>
</table>

Quark: \(Q = +1 \)

Anti-quark: \(Q = -1 \)

\(h = + \)

\(h = - \)

\(P \)

\(C \)
Chiral Symmetry of QCD

$$U(1)_R \times U(1)_L$$

$$\Psi_R \rightarrow \Psi_Re^{i\alpha}$$

$$\Psi_L \rightarrow \Psi_Le^{i\alpha}$$

$$N_R = N_R^+ - N_R^-$$ conservation

$$N_L = N_L^+ - N_L^-$$ conservation

$$U(1)_V = U(1)_R + U(1)_L, \quad U(1)_A = U(1)_R - U(1)_L$$

Vector charge $$N_V = N_R + N_L$$: Net quark number
Axial $U(1)_A$ Symmetry

\[N_A = N_R - N_L = N_R^+ + N_L^- - (N_L^+ + N_R^-) \]

Total number of Helicity $h = +$ fermions

Total number of Helicity $h = -$ fermions

Axial charge is Parity-odd, but C-even (CP-odd)
(it doesn't care whether quarks or anti-quarks)

It is simply the Net Helicity
For N_F flavors, we have an extended symmetry

$$U(N_F)_R \times U(N_F)_L$$

We usually extract $U(1)_V \times U(1)_A$ part:

$$SU(N_F)_R \times SU(N_F)_L \times U(1)_V \times U(1)_A$$

since $U(1)_A$ part is violated quantum mechanically, called Chiral Anomaly (we will come back to this later)
Quark Mass Breaks Chiral Symmetry

\[m_q \bar{\Psi} \Psi = m_q (\bar{\Psi}_L \Psi_R + \text{h.c.}) \]

This is invariant only under \(U(N_F)_R = U(N_F)_L \)

\[U(N_F)_R \times U(N_F)_L \longrightarrow U(N_F)_V \]

QCD Chiral Symmetry is an \textbf{Approximate Symmetry} since \(m_q \approx 5 \text{ MeV} \ll \Lambda_{QCD} \sim 1 \text{ GeV} \)
Even in the absence of quark mass and chiral anomaly, the QCD vacuum breaks chiral symmetry dynamically,

\[\langle \bar{\Psi} \Psi \rangle = \langle \bar{\Psi}_L \Psi_R \rangle + \text{h.c.} \approx (1 \text{ GeV})^3 \]

(Chiral Condensate)

\[U(N_F)_R \times U(N_F)_L \rightarrow U(N_F)_V \]

Why does this have to be non-perturbative?
Let's look at the operator more explicitly in \(p \)-space

\[
\Psi_R = \int \mathbf{p} \ u_R(\mathbf{p}) a_R(\mathbf{p}) e^{i \mathbf{p} \cdot \mathbf{x}} + v_L(\mathbf{p}) b_L^\dagger(\mathbf{p}) e^{-i \mathbf{p} \cdot \mathbf{x}}
\]

\[
\Psi_L = \int \mathbf{p} \ u_L(\mathbf{p}) a_L(\mathbf{p}) e^{i \mathbf{p} \cdot \mathbf{x}} + v_R(\mathbf{p}) b_R^\dagger(\mathbf{p}) e^{-i \mathbf{p} \cdot \mathbf{x}}
\]

\(u_{R/L}, v_{R/L} \) = Spinor Wave Functions

\(a_{L/R}^\dagger, b_{L/R}^\dagger \) = Quark, Anti-Quark Creation Operators
\[\bar{\Psi}_L \Psi_R = \int \bar{u}_L(p) u_R(p) a_L^\dagger(p) a_R(p) + \bar{v}_R(p) v_L(p) b_R^\dagger(p) b_L(p) \]

\[+ \bar{u}_L(p) v_L(-p) a_L^\dagger(p) b_L^\dagger(-p) + \bar{v}_R(p) u_R(-p) b_R(p) a_R(-p) \]

Spin flip is forbidden by angular momentum conservation.

Creation of L-handed fermion and anti-fermion pair back-to-back.
\[\langle \bar{\Psi}_L \Psi_R \rangle = \langle a_L^\dagger(p) b_L^\dagger(-p) \rangle + \langle a_R(p) b_R(-p) \rangle \]

Similar to Cooper Pair \(\Delta = \langle a^\dagger a^\dagger \rangle \) in Superconductivity, but with Quark-Antiquark Pair

Possible only Non-Perturbatively
Chirality Flipping by Quark Mass

A simple "mass insertion" cannot flip helicity, due to angular momentum conservation.

We need QCD interactions and m_q to flip chirality.

(Grabowska-Kaplan-Reddy, 1409.3602)
Chirality Anomaly of $U(1)_A$

\[\partial_\mu J^\mu_A \]

Triangle Diagram

\[\frac{dN_A}{dt} = \frac{e^2}{2\pi^2} \mathbf{E} \cdot \mathbf{B} + \frac{g^2}{4\pi^2} \mathbf{E}_g \cdot \mathbf{B}_g \]

QCD Gluons
Topological Fluctuations, e.g.
Instantons in vacuum
Sphalerons in high T

$U(1)_A$ is strongly broken in QCD vacuum

\[m_{\eta'} \approx 950 \text{ MeV}, \ m_{\pi^0,\pi^\pm} \approx 140 \text{ MeV} \]

Note

\[m_u \approx 2 \text{ MeV}, \ m_d \approx 5 \text{ MeV} \]

Why $m_{\pi^0} \approx m_{\pi^\pm}$?
Subtle Aspects of Chiral Anomaly

Topological

\[\frac{1}{4\pi^2} \int d^4x \, \mathbf{E}_g \cdot \mathbf{B}_g = \text{Integer} \]
Gribov's Picture of Anomaly

R-Handed Weyl Fermion Ψ_R in magnetic field

Landau Levels with 2D density of states

$\frac{eB}{2\pi}$

$n = 0$ Chiral Zero Mode
UV-IR Connection

\[E(p_z) \]

\[\frac{dp_z}{dt} = eE \]

\[\frac{dn_R}{dt} = \left(\frac{eB}{2\pi} \right) \frac{dp_z}{dt} = e^2 \frac{E \cdot B}{4\pi^2} \]

Anomaly happens here (IR)

Infinite "Dirac Sea" is needed (UV)
Axial Chemical Potential

In high T deconfined quark-gluon plasma, chiral symmetry $U(1)_A$ is approximately restored

(We will come back to this later)

N_R and N_L approximately conserved

Chiral chemical potentials

μ_R and μ_L

or, axial $\mu_A = (\mu_R - \mu_L)/2$
Chiral Magnetic Effect

\[\mathbf{J} = \frac{e^2}{2\pi^2} \mu A \mathbf{B} \]

- P-odd
- C-odd
- T-odd
- Chiral Anomaly Coefficient
- P-odd
- C-even
- T-even
- Axial Charge
- Non-Dissipative

(Fukushima-Kharzeev-Warranga, 0808.3382, Vilenkin '79)
Chiral Version of CME

There is also the Chiral Separation Effect (CSE)

\[\vec{J}_A = \frac{e^2}{2\pi^2} \mu_V \vec{B} \]

where \(\mu_V = (\mu_R + \mu_L)/2 \)

Spin Polarization \(\vec{S} \)
for Dirac fermions
(Xu-Guang Huang's Lecture)

CME + CSE

\[\vec{J}_R = \frac{e^2}{4\pi^2} \mu_R \vec{B} \]

\[\vec{J}_L = -\frac{e^2}{4\pi^2} \mu_L \vec{B} \]
Derivation of CME (I) - Nielsen-Ninomiya

Poynting's Theorem: \[\frac{\partial u}{\partial t} + \nabla \cdot S = - \mathbf{E} \cdot \mathbf{J} \]

Power to the chiral matter:

\[P = \mathbf{E} \cdot \mathbf{J} = \frac{dn_A}{dt} \mu_A = \frac{e^2}{2\pi^2} \mathbf{E} \cdot \mathbf{B} \mu_A \]

\[\implies \mathbf{J} = \frac{e^2}{2\pi^2} \mu_A \mathbf{B} \]

Same Coefficients
Derivation of CME (II) - Chiral Kinetic Theory

\[\Psi_R \] quark \(Q = +1 \) anti-quark \(Q = -1 \)

\[\vec{B} \]

Magnetic Moment Interaction

\[\Delta H = - \vec{\mu}_M \cdot \vec{B} = - \frac{eQ}{|\vec{p}|} \vec{S} \cdot \vec{B} = - \frac{eh}{2|\vec{p}|^2} \vec{p} \cdot \vec{B} \]

(Son-Yamamoto '12, Stephanov-Yin '12, Chen-Pu-Wang-Wang '13)
\[\mathbf{J}_R = \int \frac{d^3 p}{(2\pi)^3} \left(\mathbf{v}_+ f_+(p) - \mathbf{v}_- f_-(p) \right) \]

Classical Velocity: \(\mathbf{v}_+ = \mathbf{v}_- = \frac{p}{|p|} \equiv \hat{p} \)

Equilibrium: \(f^{\text{eq}}_\pm = \frac{1}{e^{\beta(|p|+\mu_R)} + 1} , \quad (\beta = 1/kT) \)

Both of them are modified at \(\mathcal{O}(\hbar) \) with \(\mathbf{B} \)
Magnetic moment interaction

\[\Delta H = - \frac{e\hbar}{2|\vec{p}|^2} \vec{p} \cdot \vec{B} \]

\[f_\pm = f_{\pm}^{eq}(|p| + \Delta H) = f_{\pm}^{eq}(|p|) + \frac{\beta e\hbar(p \cdot B)}{2|p|^2} f_{\pm}^{eq}(1 - f_{\pm}^{eq}) \]

\[\mathcal{O}(\hbar) - \text{correction} \]

This accounts for 1/3 of total CME

\[\Delta J_R = \frac{\beta \hbar(eB)}{6} \int_p \frac{1}{|p|} \left(f_+^{eq}(1 - f_+^{eq}) - f_-^{eq}(1 - f_-^{eq}) \right) = \frac{1}{3} \cdot \frac{\mu_R}{4\pi^2}(eB) \]
The rest 2/3 comes from quantum correction to the classical velocity $\Delta \vec{v}_{\pm}$, due to the Berry's Phase of spinor wave functions in p-space

$$\mathcal{A}_p = (i\hbar) u_R^\dagger(p) \nabla_p u_R(p)$$

(Son-Yamamoto '12, Stephanov-Yin '12, Chen-Pu-Wang-Wang '13)
Quantum correction to velocity

\[\Delta v_\pm = \frac{\hbar \hat{p} (\hat{p} \cdot (eB))}{|\mathbf{p}|^2} \]

This accounts for \(\frac{2}{3} \) of total CME

\[\Delta J_R = \frac{\hbar (eB)}{3} \int |\mathbf{p}|^2 (f^{eq}_+ - f^{eq}_-) = \frac{2}{3} \cdot \frac{\mu_R}{4\pi^2} (eB) \]

<table>
<thead>
<tr>
<th>(\Delta f_\pm)</th>
<th>(\frac{1}{3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta v_\pm)</td>
<td>(\frac{2}{3})</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
</tr>
</tbody>
</table>
Out-of Equilibrium CME: \(\mathbf{J}(\omega) = \sigma_5(\omega) \mathbf{B}(\omega) \)

<table>
<thead>
<tr>
<th>(\omega \ll \tau_R^{-1})</th>
<th>(\omega \gg \tau_R^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta f_\pm)</td>
<td>(\frac{1}{3})</td>
</tr>
<tr>
<td>(\Delta v_\pm)</td>
<td>(\frac{2}{3})</td>
</tr>
<tr>
<td>(\mathbf{J}_M)</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
</tr>
</tbody>
</table>

Magnetization Current \(\mathbf{J}_M = \nabla \times \mathbf{M} \),

\[
\mathbf{M} = \int_p \frac{e\hbar}{2|\mathbf{p}|^2} \mathbf{p} \left(f_+(\mathbf{p}) + f_-(\mathbf{p}) \right)
\]

(Kharzeev-Stephanov-Yee, 1612.01674)
Chiral Vortical Effect (CVE)

\[\vec{J} = \frac{e^2}{2\pi^2} \mu \mu_A \vec{\omega} \]

\[\vec{\omega} = \nabla \times \vec{v} \]

P-odd
C-odd
T-odd

P-odd
C-odd
T-even

P-even
C-even
T-odd

Axial Charge

Non-Dissipative
Relativistic Heavy-Ion Collisions (RHIC)
Heavy-Ion Collisions: Basics

- Linear superposition
- Collinear forward radiation

QED

- Non-linear YM eqns
- Gluon production in wide rapidity

QCD

Gluon production in wide rapidity

Gunion-Bertsch '82
Fluctuating Color Charges (Color Glass Condensate) [McLerran-Venugopalan '93]

Au-Au $\sqrt{s_{NN}} = 200$ GeV (RHIC)
Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV (LHC)

Gluon fields \rightarrow Quark-Gluon Plasma (QGP)

Lifetime ~ 10 fm/c, Initial temperature $T \sim 300 - 400$ MeV

120 neutrons and 80 protons
Hydrodynamics: Elliptic Flow v_2

Elliptic Flow:
\[
\frac{dN}{d\phi} = N_0 \left(1 + 2v_2 \cos(2(\phi - \Psi_{EP})) + \cdots \right)
\]

Typical value $v_2 \sim 0.01 - 0.1$
The initial gluon fields have random topological fluctuations of $\mathbf{E}^g \cdot \mathbf{B}^g \neq 0$

How long does μ_A last in QGP?

- Relaxation rate due to Sphaleron transitions $\sim \alpha_s^5 T$
- Relaxation rate due to quark mass $\sim m_q^2 \alpha_s^2 / T$

μ_A lasts up to $\sim 10 \text{ fm}/c$

(Kharzeev-Krasnitz-Venugopalan, hep-ph/0109253)
(Kapusta-Rrapaj-Rudaz, 2012.13784, Lin-Yee, 1305.3949)
CME in Heavy-Ion Collisions (II) : Magnetic Field

\[\vec{B} \sim \alpha_{EM} Z \gamma \]

Initial Magnetic Field

\[eB \sim \frac{\alpha_{EM} Z \gamma}{b^2} \sim (100 \text{ MeV})^2 \]

(Kharzeev-McLerran-Warringa, 0711.0950)

\[Z \sim 100, \gamma \sim 100, b \sim 10 \text{ fm} \]

\[eB \sim (100 \text{ MeV})^2 \sim 10^{18} \text{ G} \]

is comparable to initial T

Magnetars

\[eB \sim 10^{16} \text{ G} \]
Magnetic Field Diffusion

How long does B last in QGP?

Maxwell's eqns in a conducting plasma

$$\nabla \times E = -\frac{\partial B}{\partial t}, \quad \nabla \times B = J + \frac{\partial E}{\partial t} = \sigma E + \frac{\partial E}{\partial t}$$

$$\nabla \times (\nabla \times B) = -\nabla^2 B = -\sigma \frac{\partial B}{\partial t} - \frac{\partial^2 B}{\partial t^2} \approx -\sigma \frac{\partial B}{\partial t}$$

Conductivity from Lattice QCD: $\sigma_{\text{Lattice}} \approx 0.1 e^2 T \sim 0.01 / \text{fm}$

Magnetic field diffusion time $\tau_D = \sigma L^2 \approx 1 \text{ fm/c}$: Not long nor too short
Experimental Observables of CME

\[\mu_A > 0 \]

\[\mu_A < 0 \]

Event Plane

Event-by-Event Fluctuating Charge Dipoles

\[\frac{dN_\pm}{d\phi} = N_0 \left(1 + 2v_2 \cos(2(\phi - \Psi_{EP})) \pm 2a_1 \sin(\phi - \Psi_{EP}) + \cdots \right) \]

(D. Kharzeev, hep-ph/0406125)
\[\langle a_1^{\text{CME}} \rangle_{\text{events}} = 0 \rightarrow \langle (a_1)^2 \rangle \neq 0, \text{ but it is now } P\text{-even} \]

(We will come back to this later)

Event-by-Event \(dN/d\phi \) is a large \(N \) approximation

Each event gives \((\phi_1, \phi_2, \ldots, \phi_N)\)

Averaging over events gives Probability Dist. : \(P(\phi_1, \phi_2, \ldots, \phi_N) \)

Measured in experiments

E.g., 2-Particle Distribution

\[
\frac{d^2N}{d\phi_1d\phi_2} = \mathcal{N} \int_{\phi_3,\phi_4,\ldots,\phi_N} P(\phi_1, \phi_2, \phi_3, \ldots, \phi_N)
\]
\[\gamma = \langle \cos(\phi_1 + \phi_2 - 2\Psi_{EP}) \rangle = \frac{1}{\mathcal{N}} \int_{\phi_1, \phi_2} \cos(\phi_1 + \phi_2 - 2\Psi_{EP}) \frac{d^2N}{d\phi_1 d\phi_2} \]

\[\Delta \gamma = \gamma_{+-} - \gamma_{++} \approx a_1^2 \left(\cos \left(\frac{\pi}{2} + \left(-\frac{\pi}{2} \right) \right) - \cos \left(\frac{\pi}{2} + \frac{\pi}{2} \right) \right) = 2 \langle a_1^2 \rangle \]

(S. Voloshin, hep-ph/0406311)
\[\gamma_{++/-} = \langle \cos \phi_1 \cos \phi_2 \rangle - \langle \sin \phi_1 \sin \phi_2 \rangle \approx v_1^2 + a_1^2 + (B_{\text{IN}} - B_{\text{OUT}}) \]

The key idea is the cancellation of angle-independent backgrounds, e.g., resonance decays: \(B_{\text{IN}} - B_{\text{OUT}} \)

(Directed flow \(v_1 \) can be eliminated experimentally)

This reduces the backgrounds to only those correlated with global azimuthal asymmetry, i.e., the elliptic flow:

\[B_{\text{IN}} - B_{\text{OUT}} \sim v_2/N \sim \mathcal{O}(10^{-3}) \]
\[\Delta \gamma = \gamma_{\text{OS}} - \gamma_{\text{SS}} > 0 \]
and \(\gamma \to 0 \) for \(|\Delta \eta| > 1 \)

But, \(\gamma_{\text{OS}} \approx 0 \)
and \(\Delta \gamma \sim \mathcal{O}(10^{-3}) \)
\[\delta - \text{Correlator} \]
\[\delta = \langle \cos(\phi_1 - \phi_2) \rangle = \langle \cos \phi_1 \cos \phi_2 \rangle + \langle \sin \phi_1 \sin \phi_2 \rangle \]

CME: \[\Delta \delta = \delta_{OS} - \delta_{SS} \approx -2 \langle (a_1)^2 \rangle < 0 \]

Experiments: \[\Delta \delta^{\text{exp}} > 0 \]

In-Plane and Out-Plane can be separated
\[\langle \cos \phi_1 \cos \phi_2 \rangle = \frac{1}{2} (\gamma + \delta), \quad \langle \sin \phi_1 \sin \phi_2 \rangle = \frac{1}{2} (-\gamma + \delta) \]

(Bzdak-Koch-Liao, 0912.5050)

Very Tricky and Interesting to Explain Theoretically
LHC '12 (1207.0900) Pb + Pb at $\sqrt{s} = 2.76$ TeV

Similar Pattern is Observed
Non-CME Backgrounds is large

Magnetic Field is Much Smaller in $P + Pb$ than in $Pb + Pb$
A finite multiplicity of particles, $M = N_+ + N_- = 2N$, have self-correlations of $1/N$.

If one particle is selected, it is no longer available in the second selection experimentally, which affects $rac{d^2N}{d\phi_1d\phi_2}$.

In addition, $rac{d^2N}{d\phi_1d\phi_2}$ in general has genuine charge-dependent 2-particle correlations.

These effects combined is described by the Balance Function of "Local Charge Conservation" (Pratt-Schlichting, 1005.5341).
A Toy Example of Local Charge Conservation

Neutral pairs of π^{\pm} at $\phi = 0, \pi/2, \pi, 3\pi/2$ with elliptic flow v_2

\[
\langle \cos(2\phi) \rangle = \frac{M}{4}(1 + v_2)/(M/2) - \frac{M}{4}(1 - v_2)/(M/2) = v_2
\]

\[
\gamma_{++} = \frac{M}{4}(1 + v_2)/(M/2)(-1/(M/2 - 1)) + \frac{M}{4}(1 - v_2)/(M/2)(1/(M/2 - 1)) = -\frac{2v_2}{M}
\]

\[
\gamma_{+-} = 0
\]

\[
\Delta \gamma = \frac{2v_2}{M}
\]
Sum Rules

\[\Delta \gamma = \frac{2v_2}{M} + \frac{1}{2} \langle d_y^2 - d_x^2 \rangle, \quad \Delta \delta = \frac{2}{M} - \frac{1}{2} \langle d_y^2 + d_x^2 \rangle \]

From Self-Correlations

From CME and Finite size of the 2-particle Balance Function

\[d_y = \frac{1}{N} \left(\sum_{i=1}^{N} \sin \phi_i^+ - \sum_{i=1}^{N} \sin \phi_i^- \right), \quad d_x = \frac{1}{N} \left(\sum_{i=1}^{N} \cos \phi_i^+ - \sum_{i=1}^{N} \cos \phi_i^- \right) \]

Event-by-Event Mean Charge Dipole
The Balance Function

\[\frac{d^2N}{d\phi^+ d\phi^-} - \frac{d^2N}{d\phi^+ d\phi^+} = \frac{dN}{d\phi} \cdot B(\phi, \Delta \phi) \]

\(\Delta \gamma^{\text{exp}}\) may be explained by Local Charge Conservation
The H - Observable

(Bzdak-Koch-Liao, 1207.7327)

This motivates $\Delta \gamma = \kappa v_2 B - H$, \hspace{0.5cm} $\Delta \delta = B + H$, with the backgrounds $B \sim 1/N$

\[
H = \frac{\kappa v_2 \Delta \delta - \Delta \gamma}{1 + \kappa v_2}
\]

$\kappa \sim 1$
Experimental Efforts

Beam Energy Scan in RHIC - S. Voloshin, G. Wang, 0907.2213, 1210.5498
Event Shape Eng. U+U in RHIC - Chatterjee-P. Tribedy, 1412.5103
Pb+Pb in LHC - 1207.0900, 2005.14640
pA vs AA in LHC - W. Li, 1610.00263
New Observables, e.g., Pair-Invariant Mass - F. Wang et al., 1705.05410
R-correlator - R. Lacey, et al. 1710.01717
Signed Balance Function - A. Tang, 1903.04622
Isobar collisions of Zr and Ru in RHIC (2018) (New Result !) - 2109.00131

Theoretical Efforts

Chiral Magneto-Hydrodynamics - Y. Yin, Gursoy-Kharzeev-Rajagopal
Beam Energy Scan Theory Collaboration (BEST) - 2108.13867
Isobar Collisions: $^{96}_{40}\text{Zr}$ and $^{96}_{44}\text{Ru}$

(S. Voloshin, 0907.2213)

CME signal scales with $(eB)^2$: $R = \frac{\text{CME(Ru)}}{\text{CME(Zr)}} \sim \left(\frac{44}{40}\right)^2 \approx 1.2$
STAR '21 Result : Predefined Observables

Predefined observables, assuming identical backgrounds for Zr and Ru

\[R^{\text{exp}} < 1 \]

Baseline for the backgrounds \(\sim v_2/N \)

\[R^{\text{base}} = \frac{N_{\text{Zr}}}{N_{\text{Ru}}} < 1 \quad \text{and} \quad \frac{R^{\text{exp}}}{R^{\text{base}}} > 1 \]

CME signal may exist !

(Kharzeev-Liao-Shi, 2205.00120)
Chiral Magnetic Wave (CMW)

\(\partial_t n_{R/L} + \nabla \cdot \mathbf{J}_{R/L} = \partial_t n_{R/L} \pm \frac{e}{4\pi^2\chi} \mathbf{B} \cdot \nabla n_{R/L} = (\partial_t + \mathbf{v}_\chi \cdot \nabla)n_{R/L} = 0 \)

\(\mathbf{J}_{R/L} = \pm \frac{e^2}{4\pi^2 \mu_{R/L}} \mathbf{B} \approx \pm \frac{e}{4\pi^2\chi} n_{R/L} \mathbf{B} \quad \chi = \text{charge susceptibility} \)

Hydrodynamic propagating modes of chiral charges with velocity

\(\mathbf{v}_\chi = \pm \frac{1}{4\pi^2\chi} \mathbf{B} \)

Similar to sound waves
Experimental Signature of CMW

\[n_{ch} > 0 \]
\[n_L > 0 \]
\[n_R > 0 \]

\[\vec{B} \]

Quadrupole Moment of Charges

(Gorbar-Miransky-Shovkovy, 1101.4954
Burnier-Kharzeev-Liao-Yee, 1103.1307)

Charge Dependent Elliptic Flows

\[v_2(\pi^-) - v_2(\pi^+) = rA_{ch} , \quad A_{ch} \equiv \left(\frac{N_{\pi^+} - N_{\pi^-}}{N_{\pi^+} + N_{\pi^-}} \right) \]

Slope Parameter \(r > 0 \)
Slope Parameter in RHIC and LHC

Agrees with the CMW Predictions
(but, there are backgrounds effects, too)

STAR, 1504.02175
LHC, 1512.05739
What we did not discuss

- Chiral Hydrodynamics - D. Son-P. Surowka, 0906.5044
- Collective Modes - I. Shovkovy, 1807.07608, 2111.11416
- Chiral Plasma Instability and Chiral Turbulence - N. Yamamoto, 1302.2125, 1603.08864
- CME in Dirac/Weyl semi-metals - D.Kharzeev, Q. Li, et al., 1412.6543, K. Landsteiner, 1306.4932, 1610.04413
Related Presentations

Tuesday, June 14

• Parallel 1, 4:30 pm, by Wenya Wu
• Parallel 4, 4:00 pm, by Roy Lacey
• Parallel 4, 4:20 pm, by Yicheng Feng

Thursday, June 16

• Plenary, 9:05 am, by Evan Finch