

Strange Hadron Production in Au+Au Collisions at RHIC Beam Energy Scan

Yingjie Zhou, for the STAR Collaboration Central China Normal University

Supported in part by

Outline

- Introduction
- STAR Fixed Target (FXT)
- Results of strange hadron production
 - $p_{\rm T}$ spectra
 - Rapidity distribution
 - Yield ratio
 - Kinetic freeze-out properties
- Summary

Introduction

- RHIC BES covers a wide region of baryon density
 - Look for the onset of de-confinement, phase boundary, and location of possible critical point
- STAR FXT mode $\sqrt{s_{NN}}$ = (3.0 7.7) GeV
 - High baryon chemical potential μ_B (~400 MeV up to ~750 MeV) allows us to study the properties of high baryon density matter
 - Strangeness can be used to study medium properties at low collision energies

FXT setup at STAR

- Target was installed at the edge of TPC
- 260M events for Au+Au FXT at $\sqrt{s_{\rm NN}}$ = 3 GeV (year 2018)
- Good mid-rapidity coverage

Conventions: beam-going direction is the positive direction In C.M. frame, $y_{target}=-1.045$ for the 3 GeV collisions

Beam pipe
Au-Target = 0.25mm thickness
1% interaction probability

Particle identification and reconstruction

- TPC (dE/dx) and TOF (β) for pion, kaon and proton identification
- Reconstruct the short-lived particle $\Xi^-, \phi, \Lambda, K_S^0$ via a hadronic decay channel $-\phi \to K^+K^-, \Xi^- \to \Lambda(p\pi^-) + \pi^-, K_S^0 \to \pi^+\pi^-$
 - KF Particle package is used to improve the signal significance
- The combinatorial background is reconstructed by the rotation method

KF Particle Finder: M. Zyzak, Dissertation thesis, Goethe University of Frankfurt, 2016

Efficiency corrected $p_{\rm T}$ spectra

- Tracking efficiency and detector acceptance are estimated with GEANT simulations embedded into real events
- Λ and K_S^0 invariant yields in 0-10% centrality for various rapidity regions
- Low p_T extrapolation: Blast-Wave function

$$\frac{d^2N}{2\pi p_{\mathrm{T}}dp_{\mathrm{T}}dy} = A \int_0^R rdrm_{\mathrm{T}} \times I_0(\frac{p_{\mathrm{T}}\sinh\rho(r)}{T_{\mathrm{kin}}})K_1(\frac{m_{\mathrm{T}}p\cosh\rho(r)}{T_{\mathrm{kin}}})$$

 $T_{\rm kin}$: the kinetic freeze-out temperature $\langle \beta_T \rangle$: average transverse radial flow velocity n: the exponent of flow velocity profile, n=1 I_0 and K_1 are from Bjorken Hydrodynamic assumption

- Alternative fit functions are used in order to estimate the systematic uncertainty in dN/dy

Centrality and rapidity dependence of yields

- Rapidity dependent yields obtained from integrating data and Blast-wave function (or m_T exponential function) fits of spectra for the unmeasured region
 - y_{cm} range will be extended by eTOF & iTPC upgrade
- UrQMD reproduces the yields of Λ except in the 40-60% centrality bin, but overestimates Kaons, Ξ^- and underestimates ϕ mesons

Centrality and rapidity dependence of particle ratio

UrQMD: 0-10% and 10-40% centrality are scaled up by 25%

- Enhanced production of A at mid-rapidity compared to target rapidity
- UrQMD model underpredicts those ratios but can describe the trend of the data
- Comparison with hypernuclei to light nuclei ratios help us gain insight into hypernuclei and light nuclei production mechanisms

See talk from Yuanjing Ji, Jun 14, 2022, 11:30 AM

Strangeness production vs $\langle N_{Part} \rangle$

• Universal centrality dependence of strangeness production

- Increase with centrality
- Strangeness yield (K⁻, K_S⁰, ϕ , Λ) $\propto \left\langle N_{part} \right\rangle^{\alpha}$, $\alpha = 1.42 \pm 0.04$

• Ξ^- seems to deviate from the scaling trend

- Ξ^- is different from other hadrons due to its multi-strangequark content and sub-threshold production
- Proton has a different trend

$$K_S^0 \sqrt{s_{thr}} \sim 2.55 \text{ GeV}$$

 $\Lambda \sqrt{s_{thr}} \sim 2.55 \text{ GeV}$
 $\phi \sqrt{s_{thr}} \sim 2.89 \text{ GeV}$
 $\Xi^- \sqrt{s_{thr}} \sim 3.25 \text{ GeV}$

Strangeness production vs $\sqrt{s_{\rm NN}}$

- STAR FXT dN/dy consistent with the Λ , K_S^0 trends demonstrated by published data
- First sub-threshold Ξ^- measurement in Au+Au collisions
- Expect more results at low energies from additional high statistics BES II data sets

Data compilation: C. Blume Prog.Part.Nucl.Phys. 66 (2011) 834-879 HADES: Phys.Lett.B 793 (2019) 457-463, 2019

Particle ratios vs $\sqrt{s_{\rm NN}}$

- Local strangeness conservation is required!
- → GCE to CE transition!
- Default UrQMD failed to describe the measurement at low energies
- Transport models with high-mass resonance decay to ϕ and Ξ^- (modified UrQMD and SMASH) can reasonably describe data at low energies

UrQMD¹: the public version UrQMD²: the modified version

 r_c : correlation length, radius of the volume inside which the production of particles with open strangeness is canonically conserved

Data compilation:
STAR: Phys. Lett. B 831 (2022) 137152, Phys. Rev. C
102 (2020) 34909
HADES: Eur. Phys. J. A (2016) 52: 178
UrQMD¹: Prog. Part. Nucl. Phys. 41 (1998) 225-370
UrQMD²: J. Phys. G: Nucl. Part. Phys. 43 015104
Thermal CE: Phys. Lett. B 603, 146 (2004)

Kinetic freeze-out properties

Phys. Rev. Lett. 108 (2012) 72301 Phys. Rev. C 102 (2020) 34909

- Kinetic freeze-out temperature (T_{kin}) of Λ is systematically higher than that of K_S^0 at 3 GeV
- T_{kin} of Λ and K_S^0 at 3 GeV is lower than π, K, p at higher energy collisions
- ⇒Similar observations for protons and deuterons, implying different EOS at freeze-out

Summary

- Presented measurements on strangeness production in 3 GeV Au+Au collisions
 - Precise centrality & rapidity dependence of yields
 - ϕ/K^- and ϕ/Ξ^- show a strong effect of canonical suppression Phys. Lett. B 831 (2022) 137152
 - Λ and K_S^0 spectra indicate lower kinetic freeze-out temperature than π, K, p at higher energy collisions
- At 3 GeV, the measured v_2 for all particles are negative and the NCQ scaling breaks, especially for positive charged particles Phys. Lett. B 827 (2022) 137003
- The suppression of C₄/C₂ is consistent with fluctuations driven by baryon number conservation which indicates a hadronic interaction dominated region in the top 5% central Au+Au collisions at 3 GeV Phys. Rev. Lett. 128 (2022) 202303
- The freeze-out parameter (T_{kin}) of deuteron is systematically higher than that of proton at 3 GeV, which is different from higher energies Hui Liu, QM 2022
- →All results from 3 GeV Au+Au collisions: particle production mechanism dominated by hadronic interactions

Outlook

- Strange hadron yields together with π, K, p will be used for chemical equilibrium models to determine T_{chem} and μ_B
- High statistics data in STAR BES II $\sqrt{s_{\rm NN}}$ = 3 27 GeV, iTPC+eTOF
 - Extract freeze-out parameters
 - Analyze baryon correlation functions
 - Analyze hyper-nuclei production and collectivity
 - And more ...

