
Customizing RUCIO
at LCLS

4th RUCIO Community Workshop
Kenny Lo, Wilko Kroeger, Andrew Hanushevsky, Wei Yang
September 28, 2021, CERN

LCLS - Linac Coherent Light Source

The LCLS is a free electron laser that
produces ultra fast X-ray pulses.

LCLS has already had a significant impact
on many areas of science, including:
➔ Resolving the structures of macromolecular

protein complexes that were previously
inaccessible

➔ Capturing bond formation in the elusive
transition-state of a chemical reaction

➔ Revealing the behavior of atoms and molecules
in the presence of strong fields

➔ Probing extreme states of matter
➔ Covid-19 research, e.g. imaging of SAR-CoV2

spike protein

LCLS-II

● LCLS has been operating since 2009 using SLAC’s warm copper linear accelerator
● LCLS has provided a wide spectrum of exiting scientific results
● For LCLS-II a new superconducting accelerator is being build and the science program is scheduled for

2022
● LCLS-II will provide a jump in capabilities allowing experiments that were not possible so far.
● The pulse rate will jump to about 1MHz from the current 120Hz of the copper linac.
● Data rates will jump from a few GB/s to TB/s (data written out will be smaller)
● Both accelerators will be operated in parallel

LCLS-I in Numbers

● about 2000 registered LCLS users
● about 25% of proposed experiments are accepted
● 150-200 Experiments per year
● 2-3 PB and 350-450K files per year
● 20 PB of archived data in 2.5 million files collected since 2009
● 250K Runs in total
● ~50M key/value pairs for all Runs
● 4.5 PB storage for raw data
● 1.2 PB storage for user writable files (scratch, results)
● 120 compute nodes with 1600 cores
● For LCLS-II most of these numbers will go up by x10 - x100

Offsite - HIghest Demand Experiments
(NERSC, LCF)

Data reduction mitigates storage, networking, and processing requirements

LCLS-II Data System

Onsite

Onsite - SLAC (standard experiments)
Data Reduction

Pipeline

Online
Monitoring

Up to 1 TB/s Fast
feedback
storage

100 GB/s

Detector

Offline
storage

Offline
Processing

Offline
storage

Exascale
HPC

Fast
Feedback

~ 1 s ~minutes

>10x reduction
New for LCLS-II

Improved for LCLS-II

● Similar to LCLS-I but:
○ Data rates will increase from few GB/s to up to 1 TB/s
○ Data needs to be reduced as we can not write everything to disk

● Events are not built before being written to disk. The detector contributions to an event are
distributed over many files.

● Streaming to remote HPC sites
● Expect single file write rate to increase from 200MB/s to ~1-2GB/s

cache

real-time

LCLS Data Management

● The Data Management handles three different data types:
○ raw data in xtc format (grouped into runs, a.k.a datasets in Rucio)

■ most files are in this group
○ user daq data (not associated with a run)

■ only collected by a few experiments, files size typically small O(MB)
○ Secondary processed data (could be run associated)

■ example: process and converting raw data to hdf5 format.
● Users access files/runs using a parallel file system (Lustre), files are found by

using a predefined path e.g.: /cds/data/psdm/<instr>/<exper>/xtc.
A user is not directly accessing the file-catalog.

● User created files (during processing/analysis) are not managed by us we just
provide disk space

LCLS - Data Transfers/Replication

DAQ

DRP
(LCLS-II)

Fast
FeedBack
storage

ANAFS Archive

SLAC

burst buffer
memory …. project/

scratch
space

Archive

NERSC

Streaming aka
real-time transfer
(read-while-writing)
LCLS-I: data
movers transfer
files from DAQ to
FFB
LCLS-II: the DRP
will write directly to
the FFB (ie FFB is
1st persistent layer)

LCLS-II

bbcp/
XRootD

xrdcp

hsi/pftp

bbcp

hsi/pftp

rucio replication
possible rucio replication
special data transfers

Rucio Role in LCLS
● Data Catalog (File Manager)
● File Replication

○ Archive and restore from tape
● Purging files from disk
● Only be used for raw data
● Users don’t have direct access to RUCIO
● File count and size

○ total size ~20PB, 2.5 million files
○ ~3PB/year with 300-400K files /year
○ the yearly rates will increase by x20 (2022) - x100 (2028)

experiments ~10K

runs (data sets) millions

number of raw data files 100’s of millions over the next 5-10 yr.

Configuring Rucio Service Account
● Install git, docker, and docker-compose as pre-requisite tools in development machine
● Clone rucio repos in GitHub: rucio/rucio and rucio/containers
● Prefer SSH over ‘username/password’ authentication method
● As noted in the Policy packages section of Rucio Documentation:

○ rucio/lib/rucio/common/schema/lcls.py (atlas.py as template)
○ rucio/lib/rucio/core/permission/lcls.py (generic.py as template)

■ Set up SSH access for user (ssh-keygen credentials)
● Add and define perm_get_auth_token_ssh(issuer, kwargs)
● In has_permission(issuer, action, kwargs), add:

○ 'get_auth_token_ssh': perm_get_auth_token_ssh,
● In the [client] section of user’s rucio.cfg :

○ auth_type=ssh
○ ssh_private_key=/root/.ssh/id_rsa,

○ rucio/lib/rucio/common/utils.py (implement non-deterministic SURL algorithm for LCLS)

https://rucio.readthedocs.io/en/latest/index.html

Non-deterministic SURL for LCLS
def construct_surl_LCLS(dsn, filename):
 """
 Defines relative SURL for replicas. This method uses the LCLS convention
 for xtc files. To be used for non-deterministic sites.

 @param: filename of format <instrument>.<experiment><fld>.<remain>
 @return: relative SURL for new replica.
 @rtype: str
 """

 instr, expt, fld, remain = filename.split('.', 3)

 if fld == 'xtc' and filename.endswith('smd.xtc'):
 return '/%s/%s/xtc/smalldata/%s' % (instr, expt, remain)

 return '/%s/%s/%s/%s' % (instr, expt, fld, remain)

register_surl_algorithm(construct_surl_LCLS, 'LCLS')

Could have been easier if the scope of the raw data file’s DID was made available in
/lib/rucio/common/utils.py. (feature request submitted to Rucio team)

Running RUCIO in Docker Containers
● # docker build -t rucio/rucio-dev . (in containers/dev) ⇒ ~900MB rucio/rucio-dev:latest image
● # docker-compose --file docker-compose.yml up -d (in rucio/etc/docker/dev)

IMAGE COMMAND PORTS NAMES
gitlab-registry.cern.ch/fts/fts-monitoring "/usr/sbin/apachectl…" 0.0.0.0:8449->8449/tcp fts_webmon_1
gitlab-registry.cern.ch/fts/fts-rest "/usr/sbin/apachectl…" 0.0.0.0:8446->8446/tcp fts_rest_1
gitlab-registry.cern.ch/fts/fts3:x509-scitokens-issuer-client "/usr/bin/supervisor…" 2170/tcp fts_server_1
mysql:5 "docker-entrypoint.s…" 3306/tcp, 33060/tcp fts_mysql_1
rucio/rucio-dev "httpd -D FOREGROUND" 0.0.0.0:80->80/tcp, dev_rucio_1
 0.0.0.0:8443->8443/tcp,
 443/tcp
rucio/rucio-ui "/docker-entrypoint.…" 0.0.0.0:8444->443/tcp dev_rucioui_1
postgres:11 "docker-entrypoint.s…" 0.0.0.0:5432->5432/tcp dev_ruciodb_1
graphiteapp/graphite-statsd "/entrypoint" 80/tcp, 2003-2004/tcp, dev_graphite_1

 2013-2014/tcp,
 2023-2024/tcp, 8125-8126/tcp,
 0.0.0.0:8080->8080/tcp, 8125/udp

● FTS service configured with xrootd service endpoints for replication
● PostgreSQL (conscious choice for open source DB) configured for the Rucio database backend.

Validating and Debugging Rucio Installation

● # rucio --version ==> 1.26.1 (Stable)
● User-oriented Web UI container
● The actual changes for enabling SSH are discovered through debugging the provided

unit tests inside the Rucio container:
○ tools/run_tests_docker.sh (take time to run all tests; inundated the DB with test

data for validating initial installation! Consider -i option to pick individual unit tests.)
● Run through the examples in the Rucio documentation
● [ToDo] Increase visibility into Rucio Server operation:

○ Run Flask with Rucio app in Debug mode
○ Remote debugger attached to Rucio server in container

■ Visual Studio Code (Free)
■ PyCharm Professional Edition ($)

Replicating a File from Rucio

1. # rucio list-rse-attributes LCLS_DATA
2. LCLS_DATA: True
3. fts: https://<SLAC IP address>:8446
4. istape: False
5. naming_convention: LCLS
6. # rucio upload --rse LCLS_DATA --scope rte01 --name xtc.file.rte01-r0001-s02-c00.xtc --pfn <SLAC

pfn> /tmp/rte01-r0001-s02-c00.xtc
7. # rucio add-rule psdm:rte.rte01.xtc.rte01-r0001-s02-c00.xtc 1 LCLS_NERSC (similar to LCLS_DATA)
8. Run the rucio daemons --run-once: judge-evaluator, conveyor-[submitter, poller, finisher]
9. # rucio list-file-replicas --pfns psdm:rte.rte01.xtc.rte01-r0001-s02-c00.xtc

○ root://<SLAC xrootd endpoint>//psdm/rucio//rte/rte01/xtc/rte01-r0002-s02-c00.xtc
○ root://<NERSC xrootd endpoint>//psdm/rucio//rte/rte01/xtc/rte01-r0002-s02-c00.xtc

● Reported BUG: double slashes needed in storage prefix, highlighted in RED above.
● Question/Issue: why pfn necessary (error otherwise) in rucio upload when LCLS_DATA

already attributed LCLS as non-deterministic naming convention ?

Testing RUCIO with FTS3 Transfers

● We were able to use FTS 3 with Rucio to drive Third Party Copy (TPC)
○ LCLS will use xrootd TPC with “sss” security module (Simple Shared Secret)
○ We use rucio-conveyor-poller

● FTS3 came in container form from Gitlab @ CERN, including:
○ FTS server (set up is a bit more generic than LCLS need)

■ support xrootd TPC and http TPC: sss and x509 (w/ macaroon for HTTP TPC)
■ The “sss’ key is bind mounted to the container.

○ FTS rest
○ FTS web monitoring
○ MySQL 5 backend

● One issue
○ Rucio uses an X509 proxy to submit to FTS3. This step doesn’t include delegation
○ We need to manually delegate a X509 proxy to FTS3, outside of Rucio.
○ Can we merge the two steps to one? Or better, can we submit without using X509?

More Open Questions

● Better way (rather than using htar out of loop?) in Rucio to transfer large
quantity of small files with tracking, especially to tape storage?

● Besides MD5 (option), ADLER32 (default) in Rucio, how about support for
CRC32C (for hardware efficiency with Intel SSE 4.2)?

● How best to interface with HPSS tape systems, e.g. commanding CLI
tools?

Next Steps

1. Test against the 3rd type of docker-compose w/ActiveMQ full monitoring
stack.

2. Integration with HPSS tape archives
3. Provision and operate a much larger Rucio installation beyond the pilot

stage, with sizable backend DB (and DBA support) mimicking production.

● Onboarding Notes: https://github.com/slaclab/onboard-rucio.git

