Customizing RUCIO
at LCLS

4th RUCIO Community Workshop ®
Kenny Lo, Wilko Kroeger, Andrew Hanushevsky, Wei Yang
September 28, 2021, CERN

. A h NATIONAL

= ACCELERATOR

[J
B " "N N® | ABORATORY

0

LCLS - Linac Coherent Light Source

The LCLS is a free electron laser that
produces ultra fast X-ray pulses.

LCLS has already had a significant impact
on many areas of science, including:

-> Resolving the structures of macromolecular
protein complexes that were previously
inaccessible

=> Capturing bond formation in the elusive
transition-state of a chemical reaction

-> Revealing the behavior of atoms and molecules

in the presence of strong fields

Probing extreme states of matter

Covid-19 research, e.g. imaging of SAR-CoV2

spike protein

2

S
(~ LCLSOffice
Building (901)

S
LCLS Near
Experimental Hall

Optics/Diagnostics

-

Endstation " \ Endstation
Systems N [Systems
D

AN

LCLS Far Experimental
Hall (underground)

LCLS-lI

LCLS has been operating since 2009 using SLAC’s warm copper linear accelerator

LCLS has provided a wide spectrum of exiting scientific results

For LCLS-II a new superconducting accelerator is being build and the science program is scheduled for
2022

LCLS-II will provide a jump in capabilities allowing experiments that were not possible so far.

The pulse rate will jump to about 1MHz from the current 120Hz of the copper linac.

Data rates will jump from a few GB/s to TB/s (data written out will be smaller)

Both accelerators will be operated in parallel

Soft X-ray Experimental
Undulator Halls

Beam

LCLS-Il Layout Switchyard

aaa

— Hard X-ra
Existing Copper Undulatog
Accelerator

New Superconducting
Accelerator

LCLS-l in Numbers

about 2000 registered LCLS users

about 25% of proposed experiments are accepted

150-200 Experiments per year

2-3 PB and 350-450K files per year

20 PB of archived data in 2.5 million files collected since 2009
250K Runs in total

~50M key/value pairs for all Runs

4.5 PB storage for raw data

1.2 PB storage for user writable files (scratch, results)

120 compute nodes with 1600 cores

For LCLS-Il most of these numbers will go up by x10 - x100

LCLS-ll Data System

(A}

e Similar to LCLS-I but:
o Data rates will increase from few GB/s to up to 1 TB/s
o Data needs to be reduced as we can not write everything to disk
e Events are not built before being written to disk. The detector contributions to an event are
distributed over many files.
e Streaming to remote HPC sites
e Expect single file write rate to increase from 200MB/s to ~1-2GB/s

] >10x reduction
Upto1TBI/s |

) | feedback

storage

I N Improved for LCLS- II|
storage -

|:| Fast i

Feedback !

~minutes |

I
| 100 GB/s
I
|

Detector -

Offsite - nghest Demand Experiments
(NERSC LCF)

i Onsite

Data reduction mitigates storage, networking, and processmg reqmrements

LCLS Data Management

e The Data Management handles three different data types:
o raw data in xtc format (grouped into runs, a.k.a datasets in Rucio)
m most files are in this group
o user daq data (not associated with a run)
m only collected by a few experiments, files size typically small O(MB)
o Secondary processed data (could be run associated)
m example: process and converting raw data to hdf5 format.
e Users access files/runs using a parallel file system (Lustre), files are found by
using a predefined path e.g.: /cds/data/psdm/<instr>/<exper>/xtc.
A user is not directly accessing the file-catalog.
e User created files (during processing/analysis) are not managed by us we just
provide disk space

LCLS - Data Transfers/Replication

DAQ

Fast bbcp
DRP FeedBack - .
(LCLS-I) storage

bbcp/
XRootD

—clsl

Streaming aka

real-time transfer burst buffer

(read-while-writing) memory
LCLS-I: data

movers transfer

files from DAQ to NERSC

FFB

LCLS-II: the DRP
will write directly to
the FFB (ie FFB is
1st persistent layer)

hsi/pftp

project/
scratch
space

—— rucio replication
— —possible rucio replication
special data transfers

Rucio Role in LCLS

Data Catalog (File Manager)
File Replication
o Archive and restore from tape
Purging files from disk
Only be used for raw data
Users don’t have direct access to RUCIO
File count and size
o total size ~20PB, 2.5 million files
o ~3PB/year with 300-400K files /year
o the yearly rates will increase by x20 (2022) - x100 (2028)

experiments ~10K
runs (data sets) millions

number of raw data files 100’s of millions over the next 5-10 yr.

Configuring Rucio Service Account

Install git, docker, and docker-compose as pre-requisite tools in development machine
Clone rucio repos in GitHub: rucio/rucio and rucio/containers
Prefer SSH over ‘username/password’ authentication method
As noted in the Policy packages section of Rucio Documentation:
o rucio/lib/rucio/common/schemallcls.py (atlas.py as template)
o rucio/lib/rucio/core/permission/icls.py (generic.py as template)
m Set up SSH access for user (ssh-keygen credentials)
e Add and define
e |In , add:
©)
e In the [client] section of user’s rucio.cfg :
o auth_type=ssh
o ssh_private key=/root/.ssh/id_rsa,
o rucio/lib/rucio/common/utils.py (implement non-deterministic SURL algorithm for LCLS)

https://rucio.readthedocs.io/en/latest/index.html

Non-deterministic SURL for LCLS

def construct surl LCLS(dsn, filename):

instr, expt, fld, remain = filename.split('.', 3)

if fld == '"xtc' and filename.endswith ('smd.xtc') :
return '/%s/%s/xtc/smalldata/%s' % (instr, expt, remain)

return '/%s/%s/%s/%s' % (instr, expt, fld, remain)

register surl algorithm(construct surl LCL$ 'LCLS'")

Could have been easier if the scope of the raw data file’s DID was made available in
/lib/rucio/common/utils.py. (feature request submitted to Rucio team)

Running RUCIO in Docker Containers

e # docker build -t rucio/rucio-dev . (in containers/dev) = ~900MB rucio/rucio-dev:latest image
e # docker-compose --file docker-compose.yml up -d (in rucio/etc/docker/dev)

IMAGE COMMAND PORTS NAMES
gitlab-registry.cern.ch/fts/fts-monitoring "fusr/sbin/apachectl..." 0.0.0.0:8449->8449/tcp fts_webmon_1
gitlab-registry.cern.ch/fts/fts-rest "/usr/sbin/apachectl..." 0.0.0.0:8446->8446/tcp fts_rest_1
gitlab-registry.cern.ch/fts/fts3:x509-scitokens-issuer-client "/usr/bin/supervisor..." 2170/tcp fts_server_1
mysql:5 "docker-entrypoint.s..." 3306/tcp, 33060/tcp fts_mysql 1
rucio/rucio-dev "httpd -D FOREGROUND" 0.0.0.0:80->80/tcp, dev_rucio_1
0.0.0.0:8443->8443/tcp,
443/tcp
rucio/rucio-ui "/docker-entrypoint...." 0.0.0.0:8444->443/tcp dev_rucioui_1
postgres:11 "docker-entrypoint.s..." 0.0.0.0:5432->5432/tcp dev_ruciodb_1
graphiteapp/graphite-statsd "lentrypoint" 80/tcp, 2003-2004/tcp, dev_graphite_1

2013-2014/tcp,
2023-2024/tcp, 8125-8126/tcp,
0.0.0.0:8080->8080/tcp, 8125/udp

e FTS service configured with xrootd service endpoints for replication
e PostgreSQL (conscious choice for open source DB) configured for the Rucio database backend.

Validating and Debugging Rucio Installation

rucio --version ==> 1.26.1 (Stable)
User-oriented Web Ul container
The actual changes for enabling SSH are discovered through debugging the provided
unit tests inside the Rucio container:
o tools/run_tests docker.sh (take time to run all tests; inundated the DB with test
data for validating initial installation! Consider -i option to pick individual unit tests.)

Run through the examples in the Rucio documentation
[ToDo] Increase visibility into Rucio Server operation:
O Run Flask with Rucio app in Debug mode
O Remote debugger attached to Rucio server in container
m Visual Studio Code (Free)
m PyCharm Professional Edition ($)

Replicating a File from Rucio

CON Sabwd=

rucio list-rse-attributes LCLS DATA

LCLS_DATA: True
fts: https://<SLAC IP address>:8446
istape: False

naming_convention: LCLS

rucio upload --rse LCLS DATA --scope rte01 --name xtc.file.rte01-r0001-s02-c00.xtc --pfn <SLAC
pfn> /tmp/rte01-r0001-s02-c00.xtc

rucio add-rule psdm:rte.rte01.xtc.rte01-r0001-s02-c00.xtc 1 LCLS NERSC (similar to LCLS DATA)
Run the rucio daemons --run-once: judge-evaluator, conveyor-[submitter, poller, finisher]

rucio list-file-replicas --pfns psdm:rte.rte01.xtc.rte01-r0001-s02-c00.xtc
o root://<SLAC xrootd endpoint>//psdm/rucio//rte/rte01/xtc/rte01-r0002-s02-c00.xtc
o root://<NERSC xrootd endpoint>//psdm/rucio//rte/rte01/xtc/rte01-r0002-s02-c00.xtc

Reported BUG: double slashes needed in storage prefix, highlighted in RED above.
Question/Issue: why pfn necessary (error otherwise) in rucio upload when LCLS_DATA
already attributed LCLS as non-deterministic naming convention ?

Testing RUCIO with FTS3 Transfers

e We were able to use FTS 3 with Rucio to drive Third Party Copy (TPC)
o LCLS will use xrootd TPC with “sss” security module (Simple Shared Secret)
o We use rucio-conveyor-poller
e FTS3 came in container form from Gitlab @ CERN, including:
o FTS server (set up is a bit more generic than LCLS need)
m support xrootd TPC and http TPC: sss and x509 (w/ macaroon for HTTP TPC)
m The “sss’ key is bind mounted to the container.
o FTSrest
o FTS web monitoring
o MySQL 5 backend
e Oneissue
o Rucio uses an X509 proxy to submit to FTS3. This step doesn’t include delegation
o We need to manually delegate a X509 proxy to FTS3, outside of Rucio.
o Can we merge the two steps to one? Or better, can we submit without using X509?

More Open Questions

Better way (rather than using htar out of loop?) in Rucio to transfer large
quantity of small files with tracking, especially to tape storage?

Besides MD5 (option), ADLER32 (default) in Rucio, how about support for
CRC32C (for hardware efficiency with Intel SSE 4.2)7

How best to interface with HPSS tape systems, e.g. commanding CLI
tools?

Next Steps

Test against the 3rd type of docker-compose w/ActiveMQ full monitoring
stack.

Integration with HPSS tape archives

Provision and operate a much larger Rucio installation beyond the pilot
stage, with sizable backend DB (and DBA support) mimicking production.

Onboarding Notes: https://github.com/slaclab/onboard-rucio.git

