
Pyg4ometry: Geometry preparation
(manipulation, editing, compositing)
for Geant4 / FLUKA

Stewart Boogert and Laurie Nevay

HSF Meeting 7th June 2021

Zoom

Andrey Abramov, William Shields, Benjamin Shellswell , Stuart Walker

https://bitbucket.org/jairhul/pyg4ometry/src/develop/
http://www.pp.rhul.ac.uk/bdsim/pyg4ometry/

https://bitbucket.org/jairhul/pyg4ometry/src/develop/
http://www.pp.rhul.ac.uk/bdsim/pyg4ometry/

Stewart Boogert

• Accelerator physicist (beam
instrumentation, ILC, simulations)

• HEP PhD and post-doc
(ZEUS@HERA)

Laurie Nevay

• Senior post-doc

• Background in accelerator beam
instrumentation, high power fibre lasers

• Lead developer of BDSIM - Geant4
application for accelerator models

Introduction

Royal Holloway, University of London

Royal Holloway Physics Department:

§ Particle Physics & Condensed Matter

§ PP: Theory, ATLAS, Dark Matter &
Neutrinos, Accelerators (LHC + medical)

§ RHUL group has developed BDSIM, a code to make Geant4 accelerator models

§ Computer Physics Communications (252), July 2020, 107200 http://www.pp.rhul.ac.uk/bdsim

§ Presented at 3rd Geant4 International User Conference 2018 (http://geant4.in2p3.fr/2018/)

§ Want to insert custom components / customise models

§ Geometry preparation takes a long time

§ Needed to make geometry preparation as quick as possible to compliment BDSIM

§ Create geometry from other codes e.g. Magnetic or electromagnetic modelling

§ Interpreter or compiler checking of syntax (not possible with GMDL)

Beam delivery simulation (BDSIM)

?

BDSIM screenshot

BDSIM beam
line with
possible custom
component

https://doi.org/10.1016/j.cpc.2020.107200
http://www.pp.rhul.ac.uk/bdsim
http://geant4.in2p3.fr/2018/

Example BDSIM Syntax

"GMAD" - Geant4 + MAD (MAD is an accelerator optics code)

CERN IR1 example

H. Lefebvre (FASER) and S. Walker (ATLAS)

LHC Tunnel Complex for
accelerator background

in detector

§ RHUL group has developed BDSIM: a
code to convert accelerator
descriptions to Geant4 (geometry,
material, fields etc.)

§ Geometry preparation takes a long
time

§ Need to make geometry preparation
as quick as possible to compliment
BDSIM

§ Create geometry from other codes
e.g. Magnetic or electromagnetic
modelling

§ Interpreter or compiler checking of
syntax (not possible with GDML)

§ Rich language for creating geometry

§ Parametrized construction (length
safety)

§ Lots of geometry exists in Flair/Fluka,
STL and CAD

§ Physics comparisons between Geant4
and Fluka (or other code)

§ Facilitate geometry reuse and
modification

§ Started life as an internal group tool to
accelerate geometric model
development

§ Set of python classes to aid geometry
generation → PYG4OMETRY

History and more rationale

§ Load (and convert) GDML, STL, STEP,
FLUKA files

§ Complete support (reading/writing) of
GDML

§ Visualize geometry

§ Check for overlaps and geometry
issues

§ Composite (load and place) geometry
from different sources

§ Rendering for data analysis

§ Modify geometry (cut holes, remove
material etc.)

§ Testing ground for Geant4
developments

§ Leverage modern tools and
programming

§ Lightweight

§ Open source and simple to install

§ Simple to use API (think of a summer
student)

§ Simple to contribute to (think of a PhD
student)

§ Reasonable performance (I could not
render ATLAS in GDML, partly an issue
with the GDML)

Requirements

Legitimate questions

• Why not just write C++ using Geant4 API?

• Compilation cycle is comparatively long (5 mins)

• Hard to debug geometry in some instances (voxelization will crash because of overlaps, but how to find the
overlaps)

• Why don’t you just include this functionality in ROOT?

• Not all users of Geant4 are particle physics experts

• Hard to prototype in ROOT and scripting languages are quick for ECRS to pick up and use

• Lots of packages exist with python bindings and can be collected under pyg4ometry

• Why don’t you just expand Geant4?

• This is already being done and VTK is being developed as a visualization driver

• CGAL Boolean processing is already implemented and performs well compared existing G4 implementation

• Why don’t you just write GDML?

• Quite hard to debug when bugs are introduced

Guiding principles and implementation

§ Follow patterns of Geant4 (object interfaces, methods and internal data)

§ Use GDML as a fundamental file description of geometry

§ Use existing codes/libraries wherever possible

§ Aim for 100% test coverage

§ Create python class representation for geometric data (other data too)

GDML
FILE

FLUKA
FILE

STL
FILE

GDML
FILE

FLUKA
FILE

STEP
FILE

NGSolve FEniCS

Technology tools and dependencies

FreeCADVisualisation
Tool kit

ANTLR

Python

All dependencies are all open source
and well maintained

Important design features (G4/GDML)

§ GDML interpreted via ANTLR grammar

§ Dynamic (late) evaluation of expressions

§ Complete coverage of GDML including mathematical expressions

§ All different types of physical volume (placement, replica, parametrized etc)

§ All solids (G4) can generate a tri/quad mesh

§ Simple Boolean (union, intersection, subtraction) library based on BSP trees

§ Meshes created once per LV and placed as instances in rendering pipeline (ok
different for param and replica volumes)

§ Scene tree created from PV-LV tree

Geant4 (python) example

Defines

Materials

Solids

Structure

Geant4 (advanced python) example

§ Generic python vacuum chamber builder (CF). Arbitrary sphere with arbitrary
number of ports (flanges, beam pipes, spherical chamber)

§ Pyg4ometry code : 229 lines

§ GDML code : 385 lines

Pyg4ometry : Vtk Geant4 RayTracer

Geant4 (GDML) example

§ Load of the GDML examples
distributed with Geant4

§ Take a more complex example

§ Whole file is loaded and can be manipulated in
the python terminal

§ Dimensions can be changed, holes cut etc.

Important design features (Fluka →Geant4-
GDML)

§ For each Fluka body create a G4/GDML solid

§ Create large but finite G4/GDML solids instead of Fluka infinite solids

§ Modify the sizes of bodies to create a length safety between solids

§ Create CSG tree from Fluka regions

§ Determine is CSG tree creates disjoint solids

§ Shrink large solids once extent of Fluka region is determined

§ In a very similar way to GDML, classes
are created to represent Fluka
concepts

Fluka (python) to Geant4-GDML example

Also in here

Fluka (Flair) to Geant4-GDML example

§ Magnet created by CERN-RHUL PhD
student (Gian Luigi D’Alessandro EN-
EA-LE / KLEVER)

§ Standard Tessellation Language

§ Many 3D authoring programmes will
produce STL

§ Difficult format for GDML

§ Incorperate MeshCAD or other tools?

STL (tessellated solid) example

§ Load STEP file using FreeCAD-
OpenCascade

§ Still need to simplify CAD file

§ Bodies and Parts map well to LV
and PVs respectively. Convert
bodies to triangulated mesh and
place

§ Based on STL loading

§ Very advanced proof of principle
(working in our workflow)

§ Need to account for material

§ (what about CadMesh, DagMC,
McCAD)

STP/STEP to Geant4-GDML example

BDSIM beamline

§ Decompose G4-GDML primitive
solids to Fluka bodies, then zones
and join into regions

§ Cut daughter volumes from
mother to create flat hierarchy

§ Working through G4 solids

§ Need to implement union,
intersection and subtraction G4
solids

§ Least developed area of
pyg4ometry but making rapid
progress

§ Scales an issue [-1,1,1] as does not
exist in Fluka

Geant4-GDML to Fluka example (Primitive)

§ Possible to convert larger models
at the scale of a small
experimental region

§ Complex solids, CSG trees,
booleans

§ Issue with large CSG trees in G4
converting to Fluka

§ Fluka geometry in form of
disjunctive normal form (DNF)
and can see large blow
(computation time and memory)
up when converting from Geant4

Geant4-GDML to Fluka example (Medium)

• Cedric Hernalsteens (CERN), Robin
Tesse (ULB)

• Example of proton therapy system from Ion
Beam Applications (IBA)

• Another potential target for 3D data is
Paraview (built on VTK)

• “Industry” standard for visualisation of
3D data

• Use geometry data from pyg4ometry
and output from Geant4/Fluka

Geant4-GDML to Paraview

Three classes in general

§ Protrusion

§ Daughter overlap

§ Coplanar faces (can be a problem)

First two easily dealt with CSG
operations (intersection)

Coplanar faces needs a dedicated
algorithm (back up slides)

Search strategy

§ Between daughters of LV

§ Between daughters and LV solid

Overlap detection example

• Have 3D mesh description for Geant4 and Fluka
geometry

• Have possibility to create Augmented and Virtual reality
models of beamlines and detectors

• Great potential public engagement and outreach
potential

• Overlay particles, energy deposits etc. on AR/VR world

• Tools are being much more available (Unity, Unreal,
USDZ file format)

• Have running Geant4 on iOS and Android and
prototype of Filament (google PBR) viewer : AR-
Geant4!!

• Open on your iPhone browser (or Mac)

• www.pp.rhul.ac.uk/~sboogert/USDZ/K12_Small.usdz

Geant4-GDML to AR/VR

§ A powerful workflow could be to take
geometry from multiple different
sources and composite in a GDML file

Compositing example

§ Convert LogicalVolumes to Assembly
volumes (excellent for placement)

§ Intelligently merge two GDML files
(dealing with name clashes)

§ Example where Fluka/Geant4/GDML is
used

GDML
FILE

FLUKA
FILE

STL
FILE

GDML
FILE

FLUKA
FILE

STEP
FILE

converted tunnel complex BDSIM generic tunnel

custom tunnel prepared
using pyg4ometry

BDSIM beam line placed inside all tunnel piecesshielding blocks

FASER

§ Example using all geometries (CAD, STL, Fluka, Python and GDML)

§ Imaginary photo-injector with different components

Compositing example (Injector)

Python Geant4
STL from vacuum
company

GDML from
BDSIM

CAD/STEP

Fluka

Laser vacuum chamber

Gate valve
Quadrupole triplet

Sector bend

Faraday cup

• Hypothetical example of detector

• Silicon tracker, solenoid and ECAL

• Written in Python using pyg4ometry

• ~360 lines of Python

• ~5500 output lines of gdml

• Functions for each sub-detector

• programmatically designed

• About 8 hours of work

• Constants / variables propagate
through python expressions to final
GDML for parameterised output

HEP Detector (1)

pyg4ometry/pyg4ometry/test/pythonCompoundExamples/HepDetector.py

HEP Detector (2)

In VTK in Python

In Geant4

“Good” house keeping

Testing
§ Over 400 unit tests

§ 86% test coverage

Manual

§ Unit tests are an excellent
documentation for features

§ Sphinx documentation

§All examples in this presentation (apart
from the complex Fluka and CAD) are in
Git repository

§ Possible pyg4ometry developments

§ Need to speed up VTK (too many vtkActors)

§ C++ output for compiled code

§ Add “loop” GDML tags

§ GUI for controlling geometry creation (FreeCAD
interface)

§ Output mode for Unity/Unreal/gltf/USD(Z) engines
for outreach activities

§ Build model hierarchy (LV,PV) from Fluka input

§ Dynamic scene tree update

§ Performance testing (physics comparisons) between
Geant4 and Fluka

§ Symbolic expression simplification (GDML equations,
Fluka regions?)

§ Simultaneous STEP geometry creation (cadquery)

§ More export targets (gltf, vtk, usdz)

§ Geant4 developments

§ Create VTK based visualizer for Geant4 (might help
with solids which cannot be displayed in OpenGL
visualization)

§ Boolean processing and VTK already in geant4 now

§ Contribute to Fluka/Geant4 interoperability projects

§ Waiting for MOIRA as potential to load STEP directly into G4

§ Update GDML to use different file formats (STL, CAD)

§ Multiple GDML files per Geant4 application (currently
only one world volume supported and lots of name
collisions)

§ Flair developments

§ GDML loader for Flair?

§ Discussed with Vasilis and too many dependencies ;-(

Potential projects and future directions

• Simultaneous creation of geometry
for multiple target simulations (G4,
Fluka, MCMP, PHITS etc

• Export of meshes for Multiphysics and
other applications (need gmsh,
tetgen, CGAL, etc)

• Load of STEP, triangulate and
compare to G4 (cross checking)

• Front end UI to create G4 simulation
geometry (think Flair/FreeCAD)

• New generation of beamline builders
for FCC-ee, FCC-hh, PBC etc

• Test new visualization algorithms and
systems without need to recompile

• Develop detector geometry from start
using tools like pyg4ometry
(integrating activity of engineers,
students, software experts together)

• Workflows using triangulated or quad
meshes (DAGMC)

Imagined workflows

Conclusions

• Have developed a relatively powerful geometry manipulation tool(kit)

• Uses most up to date software packages and modern programming language

• Generic conversion back and forth between different tools is quite possible but
probably not how a tool like this will be used (area of discussion)

• Need testing and refinement on larger and more complex models to home the
algorithms and tests

• Potential to save a lot of user’s time with generating geometry

• Programmatic interface to geometry creation and manipulation, lots of potential for
different use cases we have not thought about

• Materials between different codes still needs some work

• Need to test more models, run timing tests in Geant4/Fluka

• Global name space in GDML file

• Merging GDML files needs to avoid collisions
between names of nodes

• BDSIM for example preprocesses GDML to
update all names (slow)

• Tessellated solid data could potentially be in a
separate file

• Use python object ID opposed to name to key
objects (similar to pointer usage in G4)

Backup discussion points

