Geometry Description
Markup Language (GDML)

Gabriele Cosmo, Andrei Gheata, Witek Pokorski
07.06.2021

GDML - Motivation

* simulation toolkits come with their native geometry description formats
* many (most?) of the users do not implement geometry in those formats

 users use their own geometry description formats providing more flexibility, but:
* they are integral parts of experiment software frameworks
* cannot be easily exported in application independent way

« GDML has been developed (~15 years ago)
* to have an application independent and flexible geometry format
* to be able to interchange geometry between different applications for the purpose of
» physics validation/comparison, visualization, debugging

GDML components

GDML is defined through XML Schema user application (1)
(XSD)

XSD = XML based alternative to Document
Type Definition (DTD)

defines document structure and the listof @ |-=-=-=--- \ _ -
legal elements

GDML writer

XSD are in XML -> they are extensible GDML file

GDML can be written by hand or
generated automatically GDML reader

'GDML writer' allows writing-out GDML file

GDML needs a 'reader’

'GDML reader’ creates 'in-memory'
representation of the geometry description

user application (2)

CMS detector: G4->GDML->ROO0O

~19000 physical
volumes

GDML document — core parts

<?xml version="1.0" encoding="UTF-8"?>
<gdml xsi:noNamespaceSchemaLocation="GDMLSchema/gdml.xsd">

. <define>
positions,
; ’ <position name="TrackerinWorldpos" unit="mm" x="0" y="0" z="100"/>
rotations </define>
<materials>

<element name="Nitrogen" formula="N" Z="7.">
il <atom value="14.01"/> </element>
m ’ <material formula=" " name="Air" >
aterials <D value="1.290" unit="mg/cm3"/>
<fraction n="0.7" ref="Nitrogen" />
<fraction n="0.3" ref="Oxygen" />
</material>
</materials>
<solids>

solids —) <box lunit="mm" name="Tracker" x="50" y="50" z="50"/>
</solids>
<structure>

zvolume name="World" >
<materialref ref="Air" />
<solidref ref="world" />

geometry ’ <physvol>
tree <volumeref ref="Tracker" />
<positionref ref="TrackerinWorldpos"/>
<rotationref ref="TrackerinWorldrot"/>
</physvol>
</volume>
: : </structure>
world <setup name="Default" version="1.0" >
| _} <world ref="World" />
volume </setup>

</gdml>

Auxiliary information

<volume name="Boxvol" >

<materialref ref="Air" />

<solidref ref="Box" />

<auxiliary auxtype="SensDet" auxvalue="veloSD"/>

* allows to embed arbitrary user-defined

inf [
Ornjat")n .. <auxiliary auxtype="sometype" auxvalue="somevalue">
¢ (IIStS Of) structs contalnlng (type; valu <auxiliary auxtype="somesubtype" auxvalue="somesubvalue"/>
[uniﬂ) </auxiliary>
. </volume>
e can contain several levels
e an auxiliary infopmation can ,
. . . <userinfo>
have Its SUb' ormation <auxiliary auxtype="Region" auxvalue="myregion2">

<auxiliary auxtype="RootLogicalVolume" auxvalue="myvol"/>
<auxiliary auxtype="pcut" auxvalue="2.2" auxunit="mm"/>

e can be per volume
* sensitive detector, vis
color

<auxiliary auxtype="ecut" auxvalue="1.5" auxunit="mm"/>
</auxiliary>

<auxiliary auxtype="ulimits" auxvalue="electron">
<auxiliary auxtype="ustepMax" auxvalue="5" auxunit="mm"/>
<auxiliary auxtype="utrakMax" auxvalue="5" auxunit="cm"/>

) C”'ngbal <auxiliary auxtype="uekinMin" auxvalue="900" auxunit="keVv"/>
* regions, cuts </auxiliary>
</userinfo>

* up to the user’s code to use the auxiliary
information in the program

Using auxiliary information

e Accessing auxiliary information per
volume

G4GDMLAuxListType auxInfo =
parser.GetVolumeAuxiliaryInformation(*lvolume);

* Accessing global auxiliary information

G4GDMLAuxListType auxInfoGlobal =
parser.GetAuxList();

struct G4GDMLAuxStructType
{

G4String type;

G4String value;

G4String unit;
std::vector<G4GDMLAuxStructType>* auxList;
};

using G4GDMLAuxListType =
std::vector<G4GDMLAuxStructType>;

Loops, matrices ..

defining matrix

declaring variables and constants

using loop to create

<variable name=“num” value=“5" />
</define>

<solids>

<loop for="i” from="1" to=%“num” step="1">
—

several boxes

using loop to create
volumes out of the

> <box name=“box[i+1]” x="10-i" y=%5-1/2" z=“m[2,1]” />
</loop>
</solids>

<structure>
<loop for="i” from="1" to=%“num” step="1">
<volume name=“volbox[i+1]">

boxes above

using loop to place those

<materialref ref=“iron” />
—> <solidref ref=“box[i+1]” />
</volume>
</loop>

<volume name=“world”>

<loop for="i” from=“1" to="“"num” step="1">
<physvol>

volumes
using elements from the

—> <volumeref ref=“volbox[i+1]” />
<position name=%“pos” x="5" y="m[1l,1i]”
</physvol> —>

matrix for coordinates

Toop>
</volume>
</structure>

<matrix name="‘m” coldim=%“5" values=“0 4.25 8.0 11.25 14
/ 5 4 3_2 2_56 2.048" />
<Variable name:“j—,, Value:“oll />

Z=\\OII/>

Modules

// child.gdml

* any GDML file can be used within another <volume name="childvol">

GDML file <materialref ref="Alluminium"/>
* physvol tag can use a logical volume <solidref ref="ChildBox"/>
. </volume>
from another file

* one can place the selected volume from

// mother.gdml

the ‘child’ geometry tree in any volume of
the ‘mother’ geometry tree using the
standard position and rotation

<volume name="mother">
<materialref ref="Iron"/>
<solidref ref="MotherBox" />
<physvol>

* allows to split complex geometry trees <file name="child.gdml!” volname="childvol”/>

into modules as in real life (tracker.gdml, <positionref ref="center"/>
calorimeter.gdml, beampipe.gdml) and <rotationref ref="identity"/>
combined them in detector.gdml </physvol>

</volume>

GDML readers and writers

* GDML reader and writer for Geant4 is part of the Geant4 release
* GDML reader and writer for ROOT is part of the ROOT release
* GDML reader for VecGeom part of VecGeom release

* some support for CAD to GDML (using STEP files and tesselated
solids)

* DD4Hep can use GDML as exchange format
* used by experiments for migration to DD4Hep

* and PyG4ometry can read and write GDML |

GDML In Geant4

* reader and writer fully supporting the GDML schema with all the
components

* based on XercesC XML parser
e writer can be invoked from C++ or by a command in macro file

e several examples in Geant4 in GEANT4/geant4-dev/examples/extended/persistency/gdml

GDML In Geant4

 support for all the Geant4 solids, replicas, divisions, parameterized
volumes, optical surfaces, etc

e support for NIST materials

* import/export of geometrical regions associated to volumes for
importing and storing production cuts and user-limits as global
auxiliary_info entity

* enabled/dissabled using a flag in the parser

* import/export of arbitrary user information (auxiliary information)

* sensitive detectors, visualization colours, etc
* done via parser. AddVolumeAuxiliary(...) and parser. AddAuxiliary(...)

GDML in ROOT

e ROOT geometry modeller (TGeo classes) provide built-in support for

GDML persistency
o Implemented based on ROOT TXMLEngine

o access through GeoManager
m TGeoManager: :Import(“geometry.gdml”)
m gGeoManager->Export(“geometry.gdml”)

e Development driven by the need to import Geant4 geometry setups in

ROOT
o ROQOT GDML parser used extensively in DD4HEP

e some parts of the GDML schema for read/write not supported
O no paramvol - missing support for parameterized placements
o No support for generic userinfo auxiliary tags - only Region info read so far (and
connected to TGeoVolume)

GDML in ROOT

® Support for Geant4 units was added in both TGeoManager and its GDML
import/export

o TGeo was intended unit-less (unit defined by user), however:

m Implicit connection to units via material properties
m Default units for GDML import/export are now the Geant4 ones

e Most recent additions
o Optical properties - opticalsurface, skinsurface, bordersurface

o Tessellated solids - tessellated
m Tessellation definitions in separate files not supported yet

e No developments for additional support for GDML features planned
o The current model is to add support on demand

GDML parsing in VecGeom

o Functionality added recently
o Using xerces-c for the implementation
o Separate library (libvgdml)

s Userinterface implemented as: vgdml::Frontend::Load(...)
s VecGeom data structures created by vgdml::Middleware class
m Xxerces-c interface separated in vgdml::Backend class

o VecGeom can also import GDML geometry via ROOT + transient conversion

o Just the “basic” GDML functionality available
o Only the GDML reading part, no use case so far for writing GDML from

VecGeom
s Constants, positions, rotations, solids, structure

o Several consistency fixes done recently

Unhandled GDML tags in VecGeom

e VecGeom is agnostic to physics
o Strategy: Expose unhandled data in a raw form to the user
o Special interface vgdml::Frontend::Parser::Load() returning a pointer to
vgdml::Middleware having unhandled info attached
o Material and auxiliary info
o Elements, isotopes, materials read into a Materiallnfo structure (maps of
key/value strings)
o userinfo auxiliary tags read into vgdml::Auxiliary class
e Support for more GDML tags will be needed
o To read more complex geometry files
o To allow full VecGeom persistency decoupled from ROOT

Summary —what GDML can do

* GDML is an application independent geometry description language

* basically any detector geometry can be described using it
 GDML provides means (auxiliary information) of storying any application-specific data

» GDML is extensive used for the physics testing and validation in
simulation

e past and current simulation R&D projects (GeantV, AdePT, Celeritas)
rely on GDML for the geometry import

* DD4Hep can use GDML as interchange format
e GDML manual at: https://edml.web.cern.ch/GDML/doc/GDMLmanual.pdf

https://gdml.web.cern.ch/GDML/doc/GDMLmanual.pdf

