

Laser Wire Scanner – review and prospect for FCCee

Thibaut Lefevre (CERN)

3rd June 2021 – FCCee meeting

• Measuring small Beam Size at FCCee

Laser Wire Scanner

- Concept
- Past Achievements

• Laser wire scanner opportunities at FCCee

FCCee beam parameters

Small Emittances

parameter	Z	WW	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1390	147	29	5.4
no. bunches/beam	16640	2000	393	48
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.3
horiz. geometric emittance [nm]	0.27	0.28	0.63	1.46
vert. geom. emittance [pm]	1.0	1.7	1.3	2.9
bunch length with SR / BS [mm]	3.5 / 12.1	3.0 / 6.0	3.3 / 5.3	2.0 / 2.5

FCCee beam parameters

< 10/100um beam sizes in ver/hor planes

T. Lefevre | FCC beam instrumentation – 3rd June 2021

Beam size monitors

- Wire Scanners :
 - Resolution possibly
 - Will not withstand the full beam power

- X-ray Synchrotron Radiation interferometry (to overcome diffraction limitations)
 - using micro-slits (KEK)
 - using nanoparticles (CERN)

Nanoporous material double slit

Laser wire scanner

Laser Wire Scanner : Principle

Based on Compton scattering using high power lasers

Non-invasive sub-micrometre resolution beam diagnostics

Laser Wire Scanner : motivation and history

- 3rd and 4th generation light sources and
- High energy electron/positron linear colliders

Development of high-power laser optics

- Ultra-strong focusing (F#2 and F#1) elements
- Laser delivery and manipulation

Optical cavity

Parameter	Horizontal wire	Vertical wire
Mirror reflectivity (front)	99.1%	99.8%
Mirror reflectivity (rear)	99.9%	99.9%
Mirror curvature	20 mm	20 mm
Finesse (measured)	~ 620	$\sim \! 1700$
Power gain (S)	$\sim\!660$	$\sim \! 1300$
Effective laser power	$79\pm7\mathrm{W}$	$156\pm13W$
Waist size (w_0)	$11.3\pm0.2\mu m$	$29.4\pm0.5\mu m$
Rayleigh range	760 µm	5100 µm

-150

1000

signal rate [Hz/mA]

(b)

I=18mA

vertical projected beamsize

-100

wire position [um]

I=18mA

-50

0

ATF2 – KEK LWS

Parameter	Symbol	Value	Units
Beam energy	Е	1.30	GeV
Horizontal emittance	γe _x	4×10^{-6}	m rad
Vertical emittance	γe _v	4× 10 ⁻⁸	m rad
Bunch repetition rate	f _{bunch}	3.12	Hz
Bunch length	σ_{ez}	~30	ps
Electrons per bunch	N _e	0.5–10 × 10 ⁹	e ⁻
Fractional momentum spread	Δp=p	0.001	

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 17, 072802 (2014)

Laserwire at the Accelerator Test Facility 2 with submicrometer resolution

L. J. Nevay,^{*} S. T. Boogert, P. Karataev, and K. Kruchinin John Adams Institute at Royal Holloway, University of London, Egham, TW20 0EX, United Kingdom

> L. Corner, D. F. Howell, and R. Walczak John Adams Institute at University of Oxford, Denys Wilkinson Building, Oxford OX1 3RH, United Kingdom

> > A. Aryshev, J. Urakawa, and N. Terunuma *KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan* (Received 2 April 2014; published 9 July 2014)

LWS using single pass high power laser

ATF2 – KEK LWS – Lens design

Laserwire at the Accelerator Test Facility 2 with submicrometer resolution

L. J. Nevay,^{*} S. T. Boogert, P. Karataev, and K. Kruchinin John Adams Institute at Royal Holloway, University of London, Egham, TW20 0EX, United Kingdom

> L. Corner, D. F. Howell, and R. Walczak John Adams Institute at University of Oxford, Denys Wilkinson Building, Oxford OX1 3RH, United Kingdom

> > A. Aryshev, J. Urakawa, and N. Terunuma KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan (Received 2 April 2014; published 9 July 2014)

- f2 lens at 50 mm focal distance
- Aberration free at 532 nm
- Micron spot size

ATF2 – KEK LWS – System design

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 17, 072802 (2014)

Laserwire at the Accelerator Test Facility 2 with submicrometer resolution
L. J. Nevay,^{*} S. T. Boogert, P. Karataev, and K. Kruchinin
John Adams Institute at Royal Holloway, University of London, Egham, TW20 0EX, United Kingdom
L. Corner, D. F. Howell, and R. Walczak
John Adams Institute at University of Oxford, Denys Wilkinson Building,
Oxford OXI 3RH, United Kingdom

Spatial and temporal alignment using OTR screen

ATF2 – KEK LWS – System design

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 17, 072802 (2014)

Laserwire at the Accelerator Test Facility 2 with submicrometer resolution

L. J. Nevay,^{*} S. T. Boogert, P. Karataev, and K. Kruchinin John Adams Institute at Royal Holloway, University of London, Egham, TW20 0EX, United Kingdon

> L. Corner, D. F. Howell, and R. Walczak John Adams Institute at University of Oxford, Denys Wilkinson Building, Oxford OX1 3RH, United Kingdom

> > A. Aryshev, J. Urakawa, and N. Terunuma KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan (Received 2 April 2014; published 9 July 2014)

Micron resolution achieved !

Petra III - LWS

Calorimeter Compton Beam position monitor photons e^{+/-} beam Dipole magnet Vertical Interaction breadboard chamber Beam pipe **PETRA tunnel** Relay telescope Laser hut Laser beam Q-switched laser

Development of a Laser-Wire Beam Profile Monitor for PETRA-III and CLIC Thomas Aumeyr Department of Physics Royal Holloway, University of London

		*	
Parameter	Symbo	l Value	Unit
Positron energy	E	6.0	GeV
Circumference	C	2304	m
Revolution frequency	f_{rev}	130.1	kHz
No. of bunches / fill	N_{fill}	960 and 40)
Bunch separation	Δt_b	$8 \ \mathrm{and} \ 192$	ns
Positron beam current	I_B	100	mA
No. of positrons / bunch	h N_{e^+}	$0.5~{\rm and}~12$	10 ¹⁰
Horizontal emittance	ϵ_x	1	$nm \cdot rad (rms)$
Coupling factor	κ	1	%
Vertical emittance	ϵ_y	0.01	$nm \cdot rad (rms)$
Energy spread	$\frac{\Delta E}{E}$	0.1	% (rms)
Exp. hor. beam size	σ_x^-	$\sim \! 175$	μm
Exp. vert. beam size	σ_y	$\sim \! 15$	μm

Temporal and spatial algnment done using BPM

Ring LWS using single pass high power laser

Petra III - LWS

Post-interaction Imaging system

Petra III - LWS – Vertical scans

Petra III - LWS – Horizontal scans

R&D on Fiber laser amplifier for LWS

Fibre laser

R&D on Fiber laser amplifier for LWS

R&D on fast scanning system

APPLIED PHYSICS LETTERS 94, 211104 (2009)

A large aperture electro-optic deflector

A. Bosco,^{a)} S. T. Boogert, G. E. Boorman, and G. A. Blair John Adams Institute for Accelerator Science, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, United Kingdom

Developing a fast scanning system for high power laser

Schematic of an EO deflector with hyperbolically shaped electrodes.

Demonstrating scan duration in 243us using 130kHz laser rep rate

Laser Wire Scanner for FCC

Compton Scattering at higher beam energies

Cross section is decreasing for higher beam energy but still acceptable

T. Lefevre | FCC beam instrumentation – 3rd June 2021

Laser Wire Scanner for FCC

Compton Scattering at higher beam energies

γ

- For high energy beams, the scattered photons steal most of the beam energy
- Detecting very high energy photons more efficient

Conclusion

- LWS can be positioned in the ring at any location and would work for any electron/positron beam energies without requiring modifications
- At high energy the Compton cross-section decreases but the detection of Compton photons becomes easier and cleaner
 - Done using Cherenkov gaseous detector that can be tuned to only detect high energy photons, less sensitive to photon background
- Optical diffraction radiation can be used in the ring to prealign the beams temporally and spatially
- Laser and optic technologies available
 - High power fibre laser can provide laser pulse trains at high repetition rate
 - Existing optical system demonstrated micron resolution
 - Fast scanning system could provide
- Similar hardware used for Compton polarimeter

Thanks for your attention & Congratulations to all the teams at KEK, DESY and JAI (RHUL, Oxford)

home.cern