$\mathcal{B}(B_c^+ \rightarrow \tau^+ \nu_{\tau})$ prospects at FCC-ee

Donal Hill, Clement Helsens, Yasmine Amhis, Olcyr Sumensari 17/5/21

FCC-ee P&P meeting

- Physics motivation and more details on workflow given in previous talk by Clement (see <u>here</u>)
- Study feasibility of measurement of $\mathcal{B}(B_c^+ \to \tau^+ \nu_{\tau})$ at FCC-ee
- Use $\tau^+ \to 3\pi \nu_\tau$ mode to provide the τ^+ decay vertex, which can help to isolate signal
- Show latest performance of multiple MVAs to reject inclusive $Z \rightarrow b\bar{b}/c\bar{c}/q\bar{q}$ background, selection optimisation, toy fit studies, and \mathcal{B} precision estimates

Updates since last meeting

- Moved to official *spring2021* production of events (see <u>here</u>)
 - Include ISR/FSR, Beam Energy Spread, and vertex smearing
 - Produced 28 different exclusive modes (200M events per mode) based on scrutinizing the decays passing tight MVA cuts from inclusive sample
 - Produced inclusive $Z \to b \bar{b}$ events using EvtGen for the decay (500M events, inclusive Pythia is 1B)
- Added the Primary Vertex (PV) constraint
- Fixed some issues with PV being considered in some variables used for MVA discrimination
- Dedicated production of 1B events with orthogonal seeds for training (see <u>here</u>)

- The following cuts are applied prior to first-stage MVA training:
 - $\cdot\,$ A PV is reconstructed
 - At least one reconstructed 3π candidate in the event
 - One of the 3π must be in the lower energy hemisphere
- Pre-selection cuts applied to signal and inclusive $Z \to b \bar{b} / c \bar{c} / q \bar{q}$ background samples

- Train on general event-level properties, harnessing difference in hemisphere energies between $B_c^+ \rightarrow \tau^+ \nu_{\tau}$ and $Z \rightarrow b\bar{b}/c\bar{c}/q\bar{q}$
- Also use information on PV multiplicity, number of vertices reconstructed in event, number of 3π candidates, and distance between decay vertices and PV
- Background training sample is a mix of inclusive $Z \rightarrow b\bar{b}/c\bar{c}/q\bar{q}$, combined according to Z branching ratios and efficiency of pre-selection requirements

First-stage MVA performance

- Strong rejection of all three backgrounds, with ROC = 0.984
 - $Z \rightarrow b\bar{b}$ rejected least since it produces most missing energy
- $B^+ \rightarrow \tau^+ \nu_{\tau}$ also rejected to an extent (different event-level properties compared to B_c^+)
 - Important background, which is enhanced due to B^+ vs. B_c^+ production rate but lower due to CKM suppression $(|V_{ub}|^2$ vs. $|V_{cb}|^2)$
 - Expect 5 times more events than signal before any cuts

Selection cuts before second-stage MVA

- + Apply MVA1 > 0.6 cut to remove "easy" stuff
- Select the reconstructed 3π candidate with the smallest displaced vertex χ^2
- Selected vertex must be in the hemisphere with less energy
- Apply $m(\pi\pi)$ cuts to 3π candidates to select $\rho \rightarrow \pi^+\pi^-$ region [0.6, 1.0] GeV
 - Signal decays purely via $a_1 \rightarrow \rho \pi$ resonance
- Require $m(3\pi) < m_{\tau}$, and that the difference in hemisphere energies exceeds 10 GeV

Second-stage MVA

- Trained on signal and inclusive background passing pre-selection (previous slide)
- Use properties of the 3π candidate (mass, momentum, IP, distance from PV, angle of momentum to thrust axis)
- \cdot Use IP to the PV for other decay vertices in the event
 - Associated charm hadron produced with $B_c^+ \rightarrow \tau^+ \nu_{\tau}$ originates from PV, unlike the charm hadron in $B^0 \rightarrow D^{(*)-} \tau^+ \nu_{\tau}$ for example
- Mass of PV this is larger for background because the associated charm hadron in $B_c^+ \rightarrow \tau^+ \nu_\tau$ carries energy away from the PV
- Nominal B energy = m(Z) sum of all reco. event energy apart from $E(3\pi)$

Second-stage MVA performance

- All backgrounds rejected very well, with ROC = 0.966
- Excellent rejection of $B^+ \to \tau^+ \nu_\tau$ mode as well, even though it is not used in training
 - This reduces the B^+ mode to a level where it must be constrained from independent measurements
 - Described more in toy fit setup later

2D MVA cut optimisation

- Tune the two MVA cuts to maximise purity of the signal S/(S+B), to enable a precise $\mathcal{B}(B_c^+ \to \tau^+ \nu_{\tau})$ measurement
 - + Estimate S and B expected from $5\times 10^{12}~Z$ at FCC-ee
- Inclusive $Z\to c\bar c$ and $Z\to q\bar q$ samples are rejected at 10^9 level with sufficiently tight MVA cuts
 - · All generated events are rejected
 - · Do not consider these in subsequent studies
- Inclusive $Z \to b\bar{b}$ statistics are insufficient to assess background rejection to a high enough level or create fit templates
 - Generate a set of exclusive B^0 , B^+ , B^0_s , and Λ^0_b modes where all *B*-hadron decay products are decayed inclusively

Exclusive background

- Focus on modes where a τ or charm hadron produces a displaced 3π , along with another charm hadron (this topology is most like the signal)
 - $\cdot \ B \to D^{(*)}D_s^{(*)}$
 - $\cdot B \rightarrow D^{(*)}3\pi$
 - $\cdot \ B \to D^{(*)}\tau^+\nu_\tau$
- The sum of all these exclusive modes matches the distributions in inclusive $Z \to b \bar{b}$ rather well
 - An overall rate difference of **2.5** is observed, since we are only generating about 10% of possible *B* hadron decay widths
 - Multiply the exclusive sample yields by 2.5 in the cut optimisation to account for this

Comparing inclusive, exclusive, and signal (normalised)

- Comparing shape of inclusive Pythia8 $Z \rightarrow b\bar{b}$, inclusive EvtGen $Z \rightarrow b\bar{b}$, exclusive sum of *B* hadron modes, and signal
- Maximum hemisphere energy considered as fit variable
- All plots can be found <u>here</u>

Why use the maximum hemisphere energy?

- · In an inclusive $Z \rightarrow b\bar{b}$ event, either side could have max. E
 - However, in a signal decay, the max. *E* hemisphere will most likely be the **non-signal side**
- **Result:** in signal events, max. E hemisphere looks a lot like an inclusive decay (peak near m(Z)/2 with tail)
 - In background, our selection requirements bias this hemisphere **down in energy**, giving us discrimination

Exclusive background - efficiency determination

- Full selection leaves too few events in exclusive samples to determine an accurate background efficiency
- Measure efficiency of [MVA1 > 0.95 & MVA2 > 0.95] cut for each exclusive exclusive background mode
- Parameterise shape of remaining MVA distributions using summed sample of exclusive modes
 - Fit $-\log(1 MVA)$ with cubic spline
 - Integrate splines above certain cuts to determine efficiencies (and multiply by $\epsilon [{\rm MVA1} > 0.95~\&~{\rm MVA2} > 0.95])$

Decay mode	N(expected)	N(generated)	Expected / Generated	Final ϵ
$B^+ \rightarrow \bar{D}^0 \tau^+ \nu_{\tau}$	5.01×10^{9}	2×10^{8}	25.0	1.46×10^{-9}
$B^+ \rightarrow \bar{D}^{*0} \tau^+ \nu_\tau$	1.22×10^{10}	2×10^{8}	61.1	1.1×10^{-9}
$B^+ \rightarrow \bar{D}^0 3\pi$	3.64×10^{9}	1.9×10^{8}	19.2	1.56×10^{-9}
$B^+ \rightarrow \bar{D}^{*0} 3\pi$	6.7×10^{9}	2×10^{8}	33.5	1.04×10^{-9}
$B^+ \rightarrow \overline{D}^0 D_s^+$	5.85×10^{9}	2×10^{8}	29.3	2.52×10^{-10}
$B^+ \rightarrow \bar{D}^{*0} D_s^+$	4.94×10^9	1.75×10^{8}	28.2	2.72×10^{-10}
$B^+ \rightarrow \bar{D}^{*0} D_s^{*+}$	1.11×10^{10}	2×10^{8}	55.6	2.42×10^{-10}
$B^0 \rightarrow D^- \tau^+ \nu_{\tau}$	7.02×10^{9}	2×10^{8}	35.1	2.69×10^{-9}
$B^0 \to D^{*-} \tau^+ \nu_\tau$	1.02×10^{10}	2×10^{8}	51.0	1.25×10^{-9}
$B^0 \rightarrow D^- 3\pi$	3.9×10^{9}	2×10^{8}	19.5	3.4×10^{-9}
$B^0 \rightarrow D^{*-} 3\pi$	4.69×10^{9}	2×10^{8}	23.4	9.84×10^{-10}
$B^0 \rightarrow D^- D_s^+$	4.68×10^{9}	2×10^{8}	23.4	3.23×10^{-10}
$B^0 \rightarrow D^{*-}D^+_s$	5.2×10^{9}	2×10^{8}	26.0	2.32×10^{-10}
$B^0 \rightarrow D^{*-}D_s^{*+}$	1.15×10^{10}	2×10^{8}	57.5	2.35×10^{-10}
$B_s^0 \rightarrow D_s^- \tau^+ \nu_\tau$	3.53×10^{9}	2×10^{8}	17.6	3.71×10^{-9}
$B_s^0 \rightarrow D_s^{*-} \tau^+ \nu_\tau$	2.35×10^{9}	2×10^{8}	11.8	2.27×10^{-9}
$B_s^0 \rightarrow D_s^- 3\pi$	8.85×10^{8}	2×10^{8}	4.4	5.53×10^{-9}
$B_s^0 \rightarrow D_s^{*-} 3\pi$	1.05×10^{9}	2×10^{8}	5.2	3.38×10^{-9}
$B_s^0 \rightarrow D_s^- D_s^+$	6.39×10^{8}	2×10^{8}	3.2	4.09×10^{-10}
$B_s^0 \rightarrow D_s^{*-}D_s^+$	2.02×10^{9}	2×10^{8}	10.1	3.17×10^{-10}
$B_s^0 \rightarrow D_s^{*-} D_s^{*+}$	2.09×10^9	2×10^{8}	10.5	2.56×10^{-10}
$\Lambda_b^0 \rightarrow \Lambda_c^- \tau^+ \nu_\tau$	1.83×10^{9}	2×10^{8}	9.1	1.36×10^{-9}
$\Lambda_b^0 \rightarrow \Lambda_c^{*-} \tau^+ \nu_\tau$	1.83×10^{9}	2×10^{8}	9.1	9.44×10^{-10}
$\Lambda_b^0 \rightarrow \Lambda_c^- 3\pi$	4.31×10^{8}	2×10^{8}	2.2	5.58×10^{-9}
$\Lambda_b^0 \rightarrow \Lambda_c^{*-} 3\pi$	4.31×10^8	2×10^{8}	2.2	9.21×10^{-10}
$\Lambda_b^0 \rightarrow \Lambda_c^- D_s^+$	6.15×10^{8}	2×10^8	3.1	3.46×10^{-10}
$\Lambda_b^0 \rightarrow \Lambda_c^{*-} D_s^+$	6.15×10^{8}	2×10^{8}	3.1	2.72×10^{-10}
$\Lambda_h^{\bar{0}} \rightarrow \Lambda_c^{*-} D_s^{*+}$	6.15×10^{8}	2×10^{8}	3.1	2.5×10^{-10}

Cut optimisation - results

- Estimate yields with $N_Z = 5 \times 10^{12}$, $\mathcal{B}(Z \to b\bar{b}) = 0.1512$, and B hadron production fractions from Pythia
- Estimate signal yield using $\mathcal{B}(B_c^+ \to \tau^+ \nu_{\tau}) = 0.0236$ (SM prediction), $f_c = 0.0004$ from Pythia, and selection efficiency from our signal MC
- Estimate $B^+ \rightarrow \tau^+ \nu_\tau$ and exclusive *B*-hadron background yields using PDG *B*'s, production fractions, and MC ϵ 's
- Best signal yield of 4147 events at 89% purity (ϵ = 0.31%)
- 207 events expected for $B^+ \rightarrow \tau^+ \nu_{\tau}$ mode ($\epsilon = 3.1 \times 10^{-5}$)
- Background level of 325 events estimated from a sum of all exclusive modes, scaled by 2.5 (inclusive vs. exclusive ratio)

Toy fit to measure signal yield

- Energy of the maximum energy hemisphere used as the fit variable
- Create histogram templates in $B_c^+ \to \tau^+ \nu_{\tau}$, $B^+ \to \tau^+ \nu_{\tau}$, and exclusive $(B^0, B^+, B_s^0, \Lambda_b^0)$ background
 - + Use MC with MVA1&2 > 0.99 for templates, to have sufficient stats
 - Sum exclusive backgrounds according to their expected yields from the MVA cut optimisation
- $B^+ \rightarrow \tau^+ \nu_{\tau}$ yield constrained in fit to the value found in cut optimisation, with 5% relative uncertainty
 - Projected uncertainty on $\mathcal{B}(B^+ \to \tau^+ \nu_{\tau})$ from Belle II physics book
 - This mode contributes a **yield of 5% relative to signal** after all cuts, so the uncertainty on this does not impact us so much

Toy fit to measure signal yield

- Toy datasets generated from a summed histogram PDF of signal, $B^+ \rightarrow \tau^+ \nu_{\tau}$, and total background, with yields as mentioned
 - Each bin is Poisson varied independently to create toys
- Signal and background yields vary freely in the toy fit signal is measured with 2.4% relative precision
 - + Fit with 10× higher background level measures 2.9% uncertainty

Converting from a signal yield to $\mathcal{B}(B_c^+ \to \tau^+ \nu_{\tau})$

$$\mathcal{B}(B_c^+ \to \tau^+ \nu_\tau) = \frac{N(B_c^+ \to \tau^+ \nu_\tau)}{N(B_c^+ \to J/\psi \mu^+ \nu_\mu)} \times \frac{\epsilon(B_c^+ \to J/\psi \mu^+ \nu_\mu)}{\epsilon(B_c^+ \to \tau^+ \nu_\tau)}$$

$$\times \frac{\mathcal{B}(J/\psi \to \mu\mu)}{\mathcal{B}(\tau^+ \to 3\pi\nu_\tau)} \times \mathcal{B}(B_c^+ \to J/\psi\mu^+\nu_\mu)$$

- Signal yield measured in toy fit is based on an assumed $\mathcal{B}(B_c^+ \to \tau^+ \nu_\tau) = 0.0236$
- Can convert our toy fit yield back to $\mathcal{B}(B_c^+ \to \tau^+ \nu_{\tau})$ via correction factors, and assess the precision on branching ratio
- Use some external branching fractions as well as a theory prediction for $\mathcal{B}(B_c^+ \rightarrow J/\psi \mu^+ \nu_\mu) = 0.013 \pm 0.001$

$\mathcal{B}(B_c^+ \rightarrow \tau^+ \nu_{\tau})$ calculation inputs

- Expected signal yield from cut optimisation procedure
- Yield statistical uncertainty from toy fits, scaled up by $\sqrt{2}$ to account for potential systematics (template statistics, background modelling)
- Normalisation yield calculated in similar manner to signal, assuming fairly high efficiency for three-muon mode
 - Main loss due to $m(J/\psi\mu) > 5.3$ GeV cut needed to reject the $B^{+/0}$ background (see <u>arXiv:1407.2126</u>)

Term	Value	Explanation
$\epsilon (B_c^+ \to \tau^+ \nu_\tau)$	$(3.12 \pm 0.03) \times 10^{-3}$	From our MC (assume 1% precision)
$\epsilon(B_c^+ \to J/\psi \mu^+ \nu_\mu)$	0.150 ± 0.002	Assume with 1% precision
$\mathcal{B}(J/\psi \to \mu\mu)$	$(5.96 \pm 0.03) \times 10^{-2}$	From PDG
$\mathcal{B}(\tau^+ \to 3\pi\nu_\tau)$	$(9.31 \pm 0.05) \times 10^{-2}$	From PDG
$N(B_c^+ \to \tau^+ \nu_\tau)$	4147 ± 142	Uses $N_{bar{b}}$, f_c , \mathcal{B} 's, and ϵ
$N(B_c^+ \to J/\psi \mu^+ \nu_\mu)$	70301 ± 265	Uses $N_{bar{b}}$, f_c , \mathcal{B} 's, and ϵ
$\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_\mu)$	0.013 ± 0.001	Calculation from Olcyr Sumensari ¹⁹

 $\mathcal{B}(B_c^+ \to \tau^+ \nu_{\tau}) = (2.360 \pm 0.203) \times 10^{-2}$

- Recover the input branching ratio central value as expected
- Relative uncertainty is 8.6%, including uncertainties on all of the input terms
- Uncertainty dominated by the current theory uncertainty on $\mathcal{B}(B_c^+ \rightarrow J/\psi \mu^+ \nu_\mu)$, which is 7.7%
 - + Using this and this lattice paper for current estimate along with exclusive $\left|V_{cb}\right|$
 - Uncertainty is reducible if decay form factors are measured e.g. in an angular analysis (LHCb & FCC-ee can both do this)
- Signal yield uncertainty from fit is 2.4% , which increases to 3.4% assuming the same level of systematics
 - Excellent precision using only the $\tau^+ \rightarrow 3\pi\nu_{\tau}$ mode!

Summary

- Full framework in place using FCC-ee software tools for generation, processing, and analysis of $B_c^+\to \tau^+\nu_\tau$ mode and backgrounds
- Selections exploiting missing energy signature of signal and 3π properties can achieve a high purity final dataset
 - Analysis should be feasible even if background level is higher than our estimate (e.g. fit stable with 10 times larger background)
- Signal yield measurement ~ 3% precision, but requires accurate $\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu})$ to convert to a precise $\mathcal{B}(B_c^+ \to \tau^+ \nu_{\tau})$
- Paper draft currently in preparation detailing the workflow, achievable precision, and relevant phenomenology