Additional Scalar Boson Search at FCC-ee

presented by Tianyu **Justin** Yang

in collaboration with

Aram Apyan, Jan Eysermans, Markus Klute, Lila Lyons, Jack Rich

Massachusetts Institute of Technology

FCC-ee Physics Performance Meeting, May 17, 2021

Motivation for Additional Scalar Boson Search at FCC-ee

- Additional scalar bosons required by many BSM theories:
 - Extended Higgs sector: additional singlet, 2HDM(required by MSSM), triplet, etc.
 - Potential Dark Matter candidates.
- Physics opportunities at FCC-ee
 - The FCC-ee program projected to start with a 4-year run around the Z-pole, producing \mathcal{L}_{int} = 150 ab $^{-1}$ of data, or about 3×10^{12} Z-bosons.

c.f. the entire LEP program produced only $5\times 10^6~{\rm Z}\text{-}{\rm bosons}.$

- Great sensitivity for light scalar bosons coupled to the Z, via the Higgs-strahlung-like channel.
- For charged decays of Z, we can look at the recoil mass spectrum of the Z-decay products to conduct a **decay-mode independent** search of the scalar boson. This can be supplemented by a decay-mode dependent search later.
- Complementing the LHC results (e.g. $m_{\mu\mu}$ < 25 GeV).

Figure: The Bjorken process for production of a scalar boson at FCC-ee.

A D > A D > A D > A D

The OPAL Analysis

- A similar analysis¹ was done by the OPAL Collaboration at LEP, in search for the SM Higgs.
- For LEP1 run from 1989-95, they accumulated 115.4 pb^{-1} of data at $\sqrt{s} = 91.2 \text{ GeV}$.
- Looked at three channels: $Z \to e^+e^-$, $Z \to \mu^+\mu^-$, and $Z \to \nu\bar{\nu}$ with $S^0 \to e^+e^-$ or γ .
- For the charged lepton channel, the recoil mass is calculated by

$$m_{\rm rec}^2 = (\sqrt{s} - E_{ll})^2 - p_{ll}^2.$$

- Main backgrounds: 2-fermion and 4-fermion.
- Placed limit on k where

$$k=\frac{\sigma_{S^0Z^0}}{\sigma_{H^0_{\rm SM}Z^0}}$$
 with $m_{H^0_{\rm SM}}=m_{S^0}$

¹Eur. Phys. J. C **27**, 311 (2003)

T. J. Yang (MIT)

May 17, 2021 3 / 14

イロト イボト イヨト イヨト

The OPAL Result

- We will go through a similar analysis and compare our results with the OPAL baseline.
- Our study will eventually give numbers on FCC-ee's potential to discover or exclude possible BSM scalar bosons coupling to the Z-boson, over a wide mass range.

Scalar Boson Search

The Backgrounds

• The 2-fermion background has large cross-section, but can be largely cut away by selecting on the modified acoplanarity:

$$\alpha = \frac{1}{2}(\sin\theta_1 + \sin\theta_2)|\pi - \phi_{\mathsf{open}}|$$

 $\alpha=0$ for back-to-back lepton pair.

- The 4-fermion background has cross section comparable with the SM Higgs-strahlung, but can also be greatly suppressed by cutting on *α*.
- Other cuts can also be applied to further improve the results...

T. J. Yang (MIT)

- Signal + Background samples generated by Whizard with ISR and no BES.
- Hadronization and FSR simulated in Pythia8 .
- Used <u>this</u> ILD Delphes datacard for detector simulation.
 - Tweaked photon RECO efficiency: 95 % for $E_{\gamma} > 10 \text{ GeV} \rightarrow 95 \%$ for $E_{\gamma} > 1 \text{ GeV}$.
 - Delphes simulation does not include photon conversion.
 - The photon RECO efficiency affects the photon and conversion veto performance on the 2-fermion background. Understanding the impact of the efficiency on the results will be included in our future studies.
- The end products are ROOT files written in Delphes format.

・ロット (日本) (日本) (日本) (日本)

Table of Monte Carlo Samples

Category	Sample Name	Channels	\sqrt{s} [GeV]	# of Evts	Cross Section [pb]	Gen-level cuts
Signals	eeZS_p5 eeZS_2 eeZS_5 eeZS_10 eeZS_15 eeZS_25	$Z \rightarrow l^+ l^-$ S inclusive	91	$\begin{array}{c} 3\times 10^5 \\ 3\times 10^5 \\ 3\times 10^5 \\ 2.5\times 10^5 \\ 3\times 10^5 \\ 3\times 10^5 \end{array}$	$\begin{array}{c} 37.276 \\ 27.510 \\ 17.027 \\ 7.856 \\ 5.748 \\ 2.291 \end{array}$	$m_{ll} > 20{\rm GeV}$
2-fermion	ee2fermion_mutau	2 μ or 2 $ au$	91	1×10^6	3013.049	$m_{ll}>20{\rm GeV}$
4-fermion	ee4lepton_muon	2μ + $2l$		1×10^5	11.339	$m_{ll}>20{\rm GeV}$
	ee4lepquark	2μ + $2q$	91	8.8×10^5	1.019	$m_{ll} > 20 \mathrm{GeV}$ $m_{qq} > 300 \mathrm{MeV}$

 We are completing the sample set by generating more channels for the backgrounds and more samples at higher \sqrt{s}. Higher Statistics is also desirable in some cases.

• For now, we focus on the $Z \to \mu^+\mu^-$ channel at $\sqrt{s} = 91$ GeV.

T. J. Yang (MIT)

Scalar Boson Search

Cutflow for the Muon Channel at $\sqrt{s} = 91 \text{ GeV}$

- Starting from the Delphes files, we apply the "pre-selection" cuts:
 - Photon Veto: All RECO photons should have E < 1 GeV.
 - We look for all possible final state e/μ pairs with **opposite charge**.
 - If > 1 pair found, we select the pair with the highest sum of momentum $|\vec{p_1}| + |\vec{p_2}|$.
- For each event passing the photon veto, we have selected one pair of leptons (e^+e^- or $\mu^+\mu^-$). We store their kinematic variables in TNtuple trees to save disk space and processing time. Then we cut on these variables.
 - Modified Acoplanarity: $0.11 < \alpha = \frac{1}{2}(\sin \theta_1 + \sin \theta_2)|\pi \phi_{\mathsf{open}}| < 2$
 - Forward Angles: $|\cos \theta_1| < 0.94 \text{ AND} |\cos \theta_2| < 0.94$
 - Momentum: $|\vec{p_1}| > 30 \,\mathrm{GeV} \,\mathrm{AND} \,|\vec{p_2}| > 20 \,\mathrm{GeV}$
 - Missing Momentum Angle: $|\cos \theta_{p_{miss}}| < 0.98$ for $|\vec{p}_{miss}| > 2 \,\text{GeV}$
 - Invariant Mass: $20 \text{ GeV} < m_{ll} < 100 \text{ GeV}$

イロン 不通 とくほう イヨン しほう

Cutflow Plots

 $\textbf{Z} \rightarrow \mu^{*}\mu^{*} @ ~\sqrt{\textbf{s}} = \textbf{91.2 GeV}$

T. J. Yang (MIT)

Scalar Boson Search

m_{mumu} [GeV]

Cutflow Table

Number of events in this table is normalized to the LEP1 luminosity of 115.4 pb^{-1} .

Cut	$m_s=$ 0.5 GeV	$m_s=5{ m GeV}$	$m_s=$ 25 GeV	2-fermion	4-fermion	Signal Efficiency (5 GeV)
Generation "Truth"	1437.23	645.38	87.20	174181.16	1308.52	100%
Preselection	1009.79	432.79	48.05	128053.11	540.43	67.1%
Alpha	316.23	246.49	40.01	139.78	50.10	38.2%
Forward Angle	302.67	236.26	39.47	133.52	48.39	36.6%
Momentum	273.66	210.61	21.12	110.92	28.21	32.6%
$p_{\sf miss}$ Angle	273.61	210.58	21.11	110.92	28.19	32.6%
Invariant Mass	273.61	210.58	21.11	110.92	28.19	32.6%
OPAL Final Result	-	-	-	17.0	35.4	35.0%

- The last 2 cuts are there to reduce backgrounds that we have not simulated yet.
- Comparing with OPAL, the 2f bkg is large due to low photon RECO efficiency. the 4f bkg is small due to incomplete sample set.
- The signal efficiencies agree within 10%.

化口水 化固水 化压水 化压水

Recoil Mass Plots

We then feed these recoil mass histograms to Combine, a statistics tool used by CMS, to extract limits on $k = \frac{\sigma_{S^0Z^0}}{\sigma_{H^0_{SM}Z^0}}$ with $m_{H^0_{SM}} = m_{S^0}$.

Limit Plots

- Not an apple-to-apple comparison yet: we only have muon channel at LEP1 energy.
- However, we can already observe that the sensitivity on the lower mass side is compromised by the large 2f resulting from the photon RECO efficiency, along with un-optimized cuts.

T. J. Yang (MIT)

Scalar Boson Search

- Optimize the cuts, both manually and by incorporating ML techniques.
- Include the electron channel at $\sqrt{s} = 91$ GeV, overcoming challenges in generation.
- Study the impact of photon and conversion reconstruction.
- Investigate higher mass regions by studying larger \sqrt{s} datasets.

= 900

イロト イボト イヨト イヨト

For the additional scalar boson search at FCC-ee, we have:

- Generated signal + bkg samples for the Bjorken process producing a light scalar boson with SM Higgs coupling.
- Selected lepton pairs from the Z-decay, and applied cuts from the OPAL scalar boson search to suppress the 2f and 4f background.
- Plotted the recoil mass spectrum of the muon channel events passing the cuts, and used Combine to extract limits on *k*.
- Showed that, with many precautions in mind, our analysis gives results comparable to that of OPAL.