

Update: Analysis of $ee ightarrow t ar{t}$ and jet studies

Julie Munch Torndal

Supervisors: Jørgen Beck Hansen

Niels Bohr Institute

May 17, 2021

Analysis: anomalous EW couplings of the top quark to the photon and the Z boson.

Signal: Semileptonic channel

$$tar{t}
ightarrow bar{b}W^+W^-
ightarrow bar{b}qar{q}\ell v_\ell$$

Planned phase of FCC-ee @ $\sqrt{s} = 365 GeV$

Signature: 1 lepton $+ \not \in + 4$ jets

Backgrounds:

• All MC files are generated in the FCCSW framework with DelphesPythia8_EDM4HEP and IDEA Delphes Card

Significance-Optimised Selection Cut Strategy:

Iterative procedure based on maximum significance on a set of variables

- \rightarrow choose variable with highest maximum significance
- \rightarrow make cut and reiterate on remaining set

Pre-selection cuts

- Exclude events with zero leptons
- Thrust for entire event < 0.85
- 15 GeV <Highest energy lepton < 100 GeV
- 2nd highest energy lepton < 40 GeV
- 60 GeV < Invariant mass of lepton-neutrino pair < 110 GeV
- 160 GeV < Invariant mass of event excluding highest energy lepton < 300 GeV
- Jet specific cuts to be determined

→ Jet studies!

Jet Definition

The jet definition depends on

- which partons are chosen to be combined into the jet
- how they are combined into the jet

Jet Clustering Interface

Thank you to Clement Helsens for helping setting up the interface

2º jetclustering - FCCAnalyses / analyzers / dataframe /		Go to file Add file *
This branch is 5 commits ahead, 6 commits behind master.		th Pull request
Julie Torndal Moved b-tagging to JetTaggingUtils and added an option for c-tag		× 738a3b3 15 days ago 🕤 History
Algorithms.cc	cleanup in Algorithms	3 months ago
Algorithms.h	cleanup in Algorithms	3 months ago
CMakeLists.txt	Moved b-tagging to JetTaggingUtils and added an option for c-tag	15 days ago
ExternalRecombiner.cc	Moved b-tagging to JetTaggingUtils and added an option for c-tag	15 days ago
ExternalRecombiner.h	Moved b-tagging to JetTaggingUtils and added an option for c-tag	15 days ago
DetClustering.cc	Moved b-tagging to JetTaggingUtils and added an option for c-tag	15 days ago
JetClustering.h	Added options for E0-scheme and p-scheme.	25 days ago
JetClusteringUtils.cc	Moved b-tagging to JetTaggingUtils and added an option for c-tag	15 days ago
JetClusteringUtils.h	Moved b-tagging to JetTaggingUtils and added an option for c-tag	15 days ago

Jet reconstruction with Jet Clustering Interface in FCCAnalyses:

- Interface for later stage process adaptive jet clustering using FastJet
- Jet Algorithms: k_t , Durham, e^+e^- anti- k_t , e^+e^- Cambridge, Jade Plugin, Valencia Plugin
- Recombination schemes: E-scheme, E0-scheme, p-scheme
- Jet reconstruction with exclusive clustering up to exactly 4 jets. Highest energy lepton is excluded from the clustering.

Jet Algorithms

Matching angle between reco and particle jets

Unique matching between reco and particle jets

Energy resolution of Δ E/E for reco vs. particle jet

Energy resolution of Δ E/E for reco vs. particle jet

Reco jets Particle jets Largest fraction of b-hadron decay products in one jet

Largest fraction of b-hadron decay products in one jet

Fraction of events with full separation of b-hadron decay products

Fraction of events with full separation of b-hadron decay products per Jet energy

Recombination schemes

E-scheme: Parton i and j are replaced by a pseudojet k with four-momentum

$$\mathbf{p}_k = \mathbf{p}_i + \mathbf{p}_j$$

E0-scheme: The four-momentum of pseudojet *k* is rescaled to have zero invariant mass

$$E_k = E_i + E_j$$
 , $ec{
ho_k} = rac{E_k}{|ec{
ho_i} + ec{
ho_j}|} \cdot (ec{
ho_i} + ec{
ho_j})$

p-scheme:The four-momentum is constructed to have zero invariant mass

$$\vec{p_k} = \vec{p_i} + \vec{p_j}$$
 , $E_k = |\vec{p_k}|$

Matching angle

Energy resolution

Full separations of b-hadron decay products

Fraction of events with full separation of b-hadron decay products per Jet energy

b-tagging a la Delphes

Moved b-tagging to JetTaggingUtils and added an option for c-tag

Moved b-tagging to JetTaggingUtils and added an option for c-tag

s ago 15 days ag

Delphes: ΔR (jet,b-parton) < 0.5

JetTaggingUtils.cc

JetTaggingUtils.h

Efficiency formula is applied e.g. in delphes/cards/delphes_card_IDEA.tcl:

efficiency formula for b-jets
add EfficiencyFormula {5} {0.80}

FCCAnalysis: α (jet,b-parton) < 0.3

It takes a flat efficiency (for now):

```
#Get flavour of jets
Define("jets_flavour", "JetTaggingUtils::get_flavour(jets, Particle)")
#Apply efficiency to b-tagged jets
Define("jets.btag", "JetTaggingUtils::get_btag(jets_flavour, 0.80)")
```


Number of b-tags per event

OBS: Only works for samples generated with Pythia since b-partons are selected from their status code (71-79) and PDG.

Apply vertex fitter to constituents of a jet and use distance to the IP (0,0,0):

significance
$$= rac{d}{\sigma_a^2}$$

where σ_d^2 is found using error propagation on the covarince matrix returned by the fitter.

• Assumes good separation of decay products in the jets and does not account for potential tertiary vertex. Significance distribution

Next Steps

Investigate b-tagging with vertexing further

- Primary vs. secondary tracks in a jet
- Look for other correlations

Finalise event selection

- Number of b-tags
- Jet mass
- Jet Energy
- $d_{n,n+1}$
- Significance of fitted vertex to the IP

Kinematic fit

- Aiming to write software compatible with FCCAnalyses
- Development has recently started
- Inspired by ABC-fit

• Invariant mass for jet systems

$$\Delta(m_i - m_{W/2})$$
$$\Delta(m_{ii} - m_{W})$$

$$\Delta(m_{ijk} - m_t)$$

$$\Delta(m_{l,\nu,i}-m_t)$$

Backup

List of variables:

- Highest energy lepton
- 2nd highest energy lepton
- Lepton momentum
- Lepton momentum excluding highest energy lepton
- Momentum difference between highest and second highest energy lepton
- Missing momentum
- Invariant mass of lepton-neutrino pair
- Invariant mass of 1st and 2nd highest energy leptons
- Invariant mass of event excluding highest energy lepton
- Thrust of event excluding highest energy lepton
- Thrust of entire event

$$\text{Significance} = \frac{sig}{\sqrt{sig + bkg}} \quad , \quad \text{Efficiency} = \frac{sig}{sig_{\text{tot}}} \quad , \quad \text{Purity} = \frac{sig}{sig + bkg}$$

Significance of signal for each background before and after Pre-Selection

Background	Sanity check	Pre-Selection
Total	49	315
$\mu\mu$	162	390
$\sum q ar q$	165	389
ЬБ	196	389
γZ	150	388
WW	60	323
ZZ	233	387
ZWW	405	385
ZZZ	421	390
single top	420	389

Example code

}:

```
#build pseudo jets from momentum components and energy
                         "JetClusteringUtils::set_pseudoJets(RP_px, RP_py, RP_pz, RP_e)")
.Define("pseudo jets".
#run iet clustering with all reconstructed particles.
#iade algorithm, R=0.5, exclusive clustering, exactly 4 jets, sorted by E. E0-scheme
.Define("FCCAnalysesJets_jade", "JetClustering::clustering_jade(0.5, 2, 4, 1, 10)(pseudo_jets)")
#get the jets out of the struct
.Define("jets_jade",
                              "JetClusteringUtils::get pseudoJets(FCCAnalysesJets jade)")
#get the jets constituents out of the struct
.Define("jetconstituents_jade","JetClusteringUtils::get_constituents(FCCAnalysesJets_jade)")
#get some variables
.Define("jets_jade_px",
                              "JetClusteringUtils::get_px(jets_jade)")
.Define("jets jade py".
                              "JetClusteringUtils::get pv(jets jade)")
.Define("jets jade pz",
                              "JetClusteringUtils::get_pz(jets_jade)")
.Define("jets_jade_btag",
                              "JetClusteringUtils::get btag(jets jade, Particle, 0.80)")
                                            /** Structure to keep useful informations for the jets*/
                                            struct FCCAnalysesJet{
                                              ROOT::VecOps::RVec<fastjet::PseudoJet> jets;
                                              std::vector<std::vector<int>> constituents:
```

Arguments for jet definition:

- 1.) Jet cone radius
- 2.) Clustering
 - 0=inclusive clustering,
 - 1=exclusive clustering with dcut,
 - 2=exclusive clustering to exactly njets,
 - 3=exclusive clustering up to exactly njets,
 - 4=exclusive clustering with ycut.
- 3.) Cut-value depending on clustering

- 4.) Ordering of returned jets
 - 0=sorted by p_t ,
 - 1=sorted by E.
- 5.) Recombination scheme
- (+.) Additional input parameters specific to jet algorithm
 - see JetClustering.h