
art framework overview

Kyle J. Knoepfel
HSF/DUNE framework requirements mini-workshop
2 June 2021

• The art project distributes several software products.

art software products

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop2

Lightweight library that allows
reading of art/ROOT files; does not
create new data products.

Ported from CMSSW’s FWLite by a
CMS developer.

Lightweight package that provides
a development sandbox for testing
new user-defined art modules.

Full-feature framework and its
underlying packages.

• Hierarchical data processing (𝑟𝑢𝑛 ⊃ 𝑠𝑢𝑏𝑟𝑢𝑛 ⊃ 𝑒𝑣𝑒𝑛𝑡)
• Experiments decide how to define the processing levels (e.g. event)
• All processing elements are plugins, loaded at run-time via user configuration
– Input source
– Data-processing modules
– Output modules
– Tools, user-loadable plugins providing extra flexibility
– Other utilities that facilitate data-processing

• art provides various input sources and output modules, but all processing elements
can be user-defined

• Workflows are assembled by a configuration file loaded at run-time
– Adjustments to workflows do not require recompilation of C++ source code

art concepts

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop3

• Concurrent processing of events supported within a subrun (inspired by CMS)
– Scheduled (art) vs. on-demand (CMS)

• Data-product management is thread-, type-, and const-safe
– Early deletion of products supported for memory mitigation

• Core framework functionality does not depend on ROOT
– We support a separate package (art-root-io) that provides a ROOT I/O layer

• Secondary input (backing) files

Features discussed further
• Configuration description and validation suite
• Graph of data dependencies between modules
• Output file rollover based on user-defined criteria (e.g. max. events processed)
• Implicit data-product aggregation for non-event products (e.g. POT accounting)

Highlighted features

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop4

• Fermilab Hierarchical Configuration Language (FHiCL)
– Not Turing complete; it’s a data-description language
– “JSON on steroids”

• Removes extraneous syntax (quotation marks and trailing commas)
• Supports comments
• Facilities for ensuring single points of maintenance (splicing, substitution, etc.)
• Designed to be scripted and not scripting

Configuration language

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop5

• Fermilab Hierarchical Configuration Language (FHiCL)
– Not Turing complete; it’s a data-description language
– “JSON on steroids”

• Removes extraneous syntax (quotation marks and trailing commas)
• Supports comments
• Facilities for ensuring single points of maintenance (splicing, substitution, etc.)
• Designed to be scripted and not scripting

• What would we do differently?
– FHiCL has served our users well (generally speaking)
– Has become a maintenance burden for FNAL
– Will likely support Jsonnet in the future (didn’t exist when art was born)

• Gaining momentum across industry as configuration language

Configuration language

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop6

• Common problem: how do I configure my program? What if I make a mistake?

Configuration description and validation

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop7

• Common problem: how do I configure my program? What if I make a mistake?
• Users can provide C++ documentation/validation structures:

Configuration description and validation

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop8

• Common problem: how do I configure my program? What if I make a mistake?
• Users can provide C++ documentation/validation structures:

Configuration description and validation

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop9

• Common problem: how do I configure my program? What if I make a mistake?
• Users can provide C++ documentation/validation structures:

Configuration description and validation

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop10

• The fully processed configuration is persisted to output files.
– Self-describing output files
– Can reproduce an output file solely by its persisted configuration (assuming same

environment is setup)

Configuration processing and persistence

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop11

• The fully processed configuration is persisted to output files.
– Self-describing output files
– Can reproduce an output file solely by its persisted configuration (assuming same

environment is setup)

• During the configuration-processing stage, art prunes modules from the
configuration that are not used in event-processing.
– Reduces memory footprint of job
– Reduces size of persisted configuration
– Simplifies debugging
– Allows for better equivalence relationships among configurations

Configuration processing and persistence

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop12

• art assembles the graph of
data dependencies
between modules.

• Data-dependency errors
are caught at job start-up
time, just after module
constructors have been
called.

• We have not yet used the
graph to optimize event
processing.

Data-dependency graph

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop13

CalHelixFinderDem

CalTimePeakFinder

all_pathDeltaFinder

makePH

CalSeedFitDem

all_path

makeSH

2 CaloClusterFromProtoCluster

g4status

all_path

CalTrkFitDem

all_path

CaloProtoClusterFromCrystalHit

2

all_path

CaloCrystalHitFromHit

CaloRecoDigiFromDigi

all_path

CaloDigiFromShower

CaloShowerStepROFromShowerStep

all_path

all_path

KFFUeP

all_path

CaloShowerStepFromStepPt

g4run

5

all_path

source

makeSD

all_pathmuonTimeMap protonTimeMap

all_path

2

2

FlagBkgHits

all_path

2

2

HelixFinder

TimeClusterFinder

all_path

KFFDeM

KSFDeM

all_path

KSFUeP

all_path

all_path

2

all_path

2

MergePatRecDem

all_path 2

2

all_path

TrackCaloIntersectionDem

all_path

TrackCaloMatchingDem

all_path

fullOutput

generate

all_path

5

all_path

all_path

all_path all_path

• Users can configure output modules to rollover to a
new output file when a condition is met (max. number
of events, file size, time open, etc.).

• (Sub)run products can be spread across multiple files
• Whenever the files are concatenated together, art can

combine the products according to an aggregation
behavior (e.g.):
– Count of protons-on-target are summed
– Map of particle species are combined via insert
– Any user-defined aggregation function

Implicit data-product aggregation

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop14

Input source
nEvents: 200

a.root
Protons[100]

Protons run product created

b.root
Protons[100]

• Users can configure output modules to rollover to a
new output file when a condition is met (max. number
of events, file size, time open, etc.).

• (Sub)run products can be spread across multiple files
• Whenever the files are concatenated together, art can

combine the products according to an aggregation
behavior (e.g.):
– Count of protons-on-target are summed
– Map of particle species are combined via insert
– Any user-defined aggregation function

Implicit data-product aggregation

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop15

• art infrastructure necessary for this makes some multi-threading issues easier:
– Distinction between a (e.g.) full run vs. a run fragment
– Set of events corresponding to a given product (to avoid double counting)

Input source
nEvents: 200

a.root
Protons[100]

Protons run product created

b.root
Protons[100]

• No system specifically dedicated to conditions information.

• art supports several facilities that are often used in providing such info:
– Worked with DB experts at FNAL to design a C++ API that meshes DB access with

framework use
– Services frequently used to retrieve DB information
– Caching system with concurrent entry insertion, deletion, and retrieval

• Users define intervals-of-validity

Conditions information

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop16

• Decisions are jointly made by the development team and stakeholders
– Representatives that convey the needs of the experiment/project.
– All stakeholders’ votes have equal weight

art support model

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop17

• Decisions are jointly made by the development team and stakeholders
– Representatives that convey the needs of the experiment/project.
– All stakeholders’ votes have equal weight

• Potential for experiments to want conflicting framework behaviors/features
– True in principle; but it has not happened in 10 years
– We strive hard for stakeholder consensus on any given feature.
– We provide enough flexibility in the framework that each experiment’s needs can be met.

art support model

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop18

• Decisions are jointly made by the development team and stakeholders
– Representatives that convey the needs of the experiment/project.
– All stakeholders’ votes have equal weight

• Potential for experiments to want conflicting framework behaviors/features
– True in principle; but it has not happened in 10 years
– We strive hard for stakeholder consensus on any given feature.
– We provide enough flexibility in the framework that each experiment’s needs can be met.

• All stakeholders use the same binary executable
– Some minute variations wrt default configurations and executable names

art support model

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop19

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop20

art provides the framework needs for ~2k physicists

LArIAT
experiment

artdaq
project

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop21

art provides the framework needs for ~2k physicists

276,590

60,498

411,891

296,392

LArIAT
experiment

56,051

49,889

575,789

65,641

1,929,129

artdaq
project
40,647

4.9M LOC in aggregate

1,126,526

Not only do you need to know what the framework is intended to accomplish, but who
are the individuals that will be using it.

In our experience, framework users…

Some learned lessons: Know your users

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop22

Not only do you need to know what the framework is intended to accomplish, but who
are the individuals that will be using it.

In our experience, framework users…

• Are often willing to learn
• Are anxious to try new language features as soon as possible
• Prefer lightweight, simple-to-use systems

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop23

Some learned lessons: Know your users

Not only do you need to know what the framework is intended to accomplish, but who
are the individuals that will be using it.

In our experience, framework users…

• Are often willing to learn
• Are anxious to try new language features as soon as possible
• Prefer lightweight, simple-to-use systems
• Rarely read documentation (which is sometimes a blessing)
• Often work under supervisors who have little regard for robust coding practices
• Often suggest solution X when they need to solve problem Y

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop24

Some learned lessons: Know your users

• How do you encourage users to try something new?

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop25

Some learned lessons: Sociology is the hardest part

• How do you encourage users to try something new?

In our experience, an HEP experiment will willingly consider using a new
software product if each of the following are true:

a. There is a perceived technological benefit
b. There is a clear support model that benefits the experiment
c. There is a practical migration path

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop26

Some learned lessons: Sociology is the hardest part

• How do you encourage users to try something new?

In our experience, an HEP experiment will willingly consider using a new
software product if each of the following are true:

a. There is a perceived technological benefit
b. There is a clear support model that benefits the experiment
c. There is a practical migration path

• It is not always easy to achieve all three.

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop27

Some learned lessons: Sociology is the hardest part

As presented (with minor adjustments) 10 March 2020 at Jefferson Lab’s Software & Computing Roundtable
– https://indico.jlab.org/event/356/#4-the-art-framework-what-it-is

• art’s rigid processing hierarchy has been an awkward fit for neutrino experiments
– Would probably pursue something more flexible next time

• art supports a class a plugins (services) that can be accessed from anywhere.
– This has led to many thread-safety issues that experiments must deal with.

• art users can access metadata and provenance about data products
– Many users do not look at this information
– Not clear how much of this has been worth it; might think of something else next time.

• Framework limitations are not bad! Know what they are.

Some learned lessons: framework-specific

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop28

https://indico.jlab.org/event/356/

As presented (with minor adjustments) 10 March 2020 at Jefferson Lab’s Software & Computing Roundtable
– https://indico.jlab.org/event/356/#4-the-art-framework-what-it-is

• art’s rigid processing hierarchy has been an awkward fit for neutrino experiments
– Would probably pursue something more flexible next time

• art supports a class a plugins (services) that can be accessed from anywhere.
– This has led to many thread-safety issues that experiments must deal with.

• art users can access metadata and provenance about data products
– Many users do not look at this information
– Not clear how much of this has been worth it; might think of something else next time.

• Framework limitations are not bad! Know what they are.

Some learned lessons: framework-specific

6/2/21 K. J. Knoepfel | HSF/DUNE mini-workshop29

Thanks

https://indico.jlab.org/event/356/

