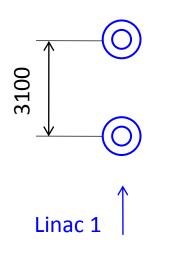
Drive Beam Linac , surface building and equipment

B. Jeanneret, G. McMonagle August 2010 With material thanks to E.Jensen, R. Wegner, A. Aksoy, D. Siemaszko & D. Nisbet, J. Osborne, N. Baddams

parameters

Beam energy	2.370E+09	eV	E		DB Linac	Ref :	Erk ACE Feb1	D	
Rep rate	5.000E+01		f		BJ may 2010		Rolf BDyn Aug09		
Total pulse length	1.403E-04	s	tau		improved 'April10' version		Avni xls 14apr10		
pulse length	2.450E+02	ns	tau_train						
Beam current	4.210E+00	Α	I						
Klystron power	1.500E+07	W	Pk		OPTICS				
module yield	9.500E-01		Ym						
loss between klys/cells	9.500E-01		Yt		Quad assembly	6.000E-01	m		
					(Q+BPM+other)				
Acc volt/module	3.216E+06	V	Ym*Yt*Pk/I		Quadrupoles				
accelerating phase phia	1.900E+01	deg			Integrated normalised	l nom gradient	4.950E-01	kL m^-1	(2.75x0.18)
cos(phia)	9.455E-01		cphia		Integrated gradient +		4.302E+00	GL Tm/m	from Avni
					length		2.500E-01	Lm	
Installation margin	1.050E+00		imargin		Gradient		1.721E+01	G T/m	
nb modules , 1 linac	819		imargin*E/Vm/	/cphia	Radius		5.000E-02	R = 49 mm +	1mm pipe
nb modules , 2 linac	1638				Pole tip field		8.603E-01	Т	
RF length	2.500E+00	m			Total nb Q , 2 linac		1638		
(20cells 0.1m +0.5m couplers+interconnect)							L & G can be varied, GL is constant		nstant
1 Module + 1 Q	3.100E+00	m			variant for quad		1.5T/m,Bpole=1	.08T	
					CO dipole corrector	L=0.2m, 0.03	T		
RF length	2.048E+03	m							
Optics	4.914E+02	m					Total plug power		
Total Linac L	2.539E+03	m			RF	287.3			
					Solenoid	4.9			
Klys+mod yield	6.000E-01				Quadrupoles	3.8	296.0		
Total peak RF power/linac	1.229E+10	W			BEAM POWER				
Average total RF power/linac	8.618E+07	W							
Total plug power/linac	1.436E+08	W			P1 = I*tau*fr*E	6.999E+07	1 Linac		
RF plug power , 2 Linac	2.873E+08	W			P = 2P1	1.400E+08	W		
FODO cell	Q + RF + Q +	RF	6.200E+00						
Klystron spacing / linac			3.100E+00						

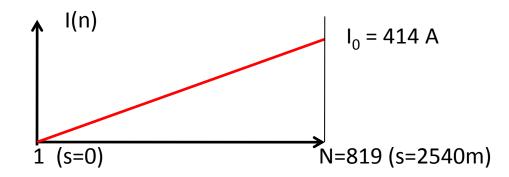

Cell structure

R. Wegner, E. Jensen, A, Aksoy, D. Schulte

- RF active section : 20 cells × 0.1m = 2m
- Coupler, interconnect : 0.5 m
- Quad, MBCO, BPM : 0.6 m
- TOTAL

: 3.1 m

• May need adjustement (Vacuum equip. for pressure p ~ 5 10⁻¹¹ Torr, ...)



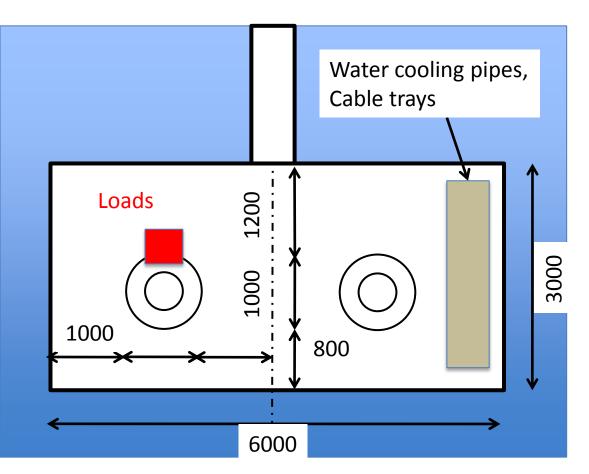
15 MW klystrons Acc. V/module 3.2 MV 819 cells / linac Total length 2540 m

Plug-power for RF (2 linacs): 290 MW (→ 0.115 MW/m)

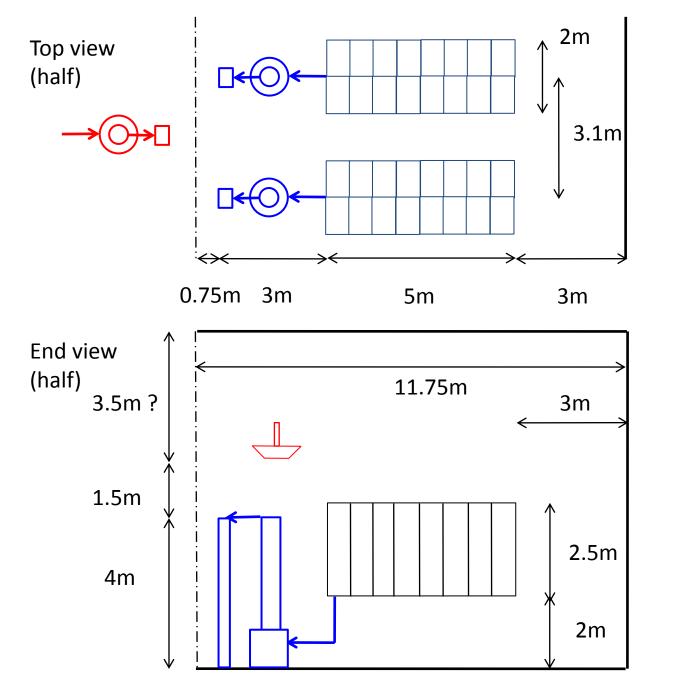
Magnets – quadrupoles

- N=819 Q, spaced by 3.1m for each Linac (total Linac length 2540m)
- R = 3.7 $10^{-2} \Omega$, I_{max} = I₀ = 414 A, p_{max} = 6.3 kW
- Gradient must follow the beam energy increase
 → l(n) = nl₀/N
- \rightarrow Power scheme similar to DECEL_Q advisable
- \rightarrow Total power : P = Np_{max}/3 = 4 MW

Power & Cooling


- Total plug power for RF : P_{tot} = 290 MW
 - − 140 MW to beam \rightarrow 150 MW to heat
- Total power for magnets (Quad + Sol): 9 MW to heat
- Total installed power :

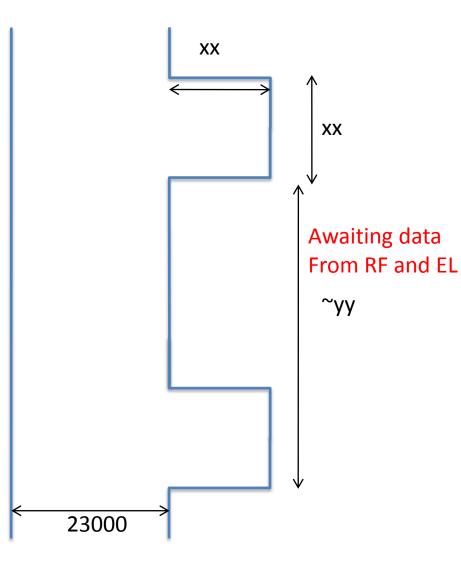
- $P_{installed} = (1 + \epsilon) \times (290 + 9)$


- with ε the 18kV conversion yield (see with Daniel/Cesary)
- Add for light, cranes, safety systems, ...
- Total cooling power (tunnel & surf. Blg) :

 $- P_{cool} = (1 + \epsilon) \times (150 + 9)$

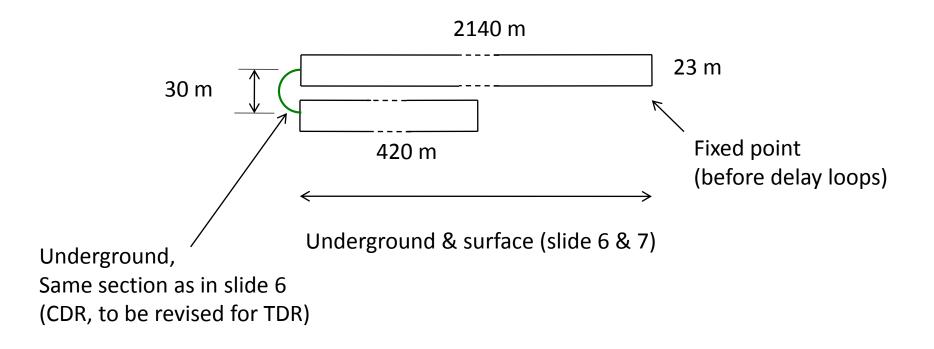
DB Linac, tunnel

- Total length now : 2540 m
- \rightarrow conflict with EHN1
- → move towards top of the drawing, see below



DB Linac building

Width: 23.5m Height: 9m ? Length : 2540 m


Klystrons are transported along the central path. A technical area without RF must be foreseen at crane extremities

Top View of DB Linac

- A small building is needed for 18kV station ~ every yy = 40 m ?
- Size : xx by xx , xx = ?
- Installed power
 4.6 MW/40m

Top view of DB Linac buildings

DB Linac (undergroud and surface)

- Long segment : 2140 m
- Short segment: 420 m
- Loop : underground
 - radius : 30 m
- Axis separation of the segments :

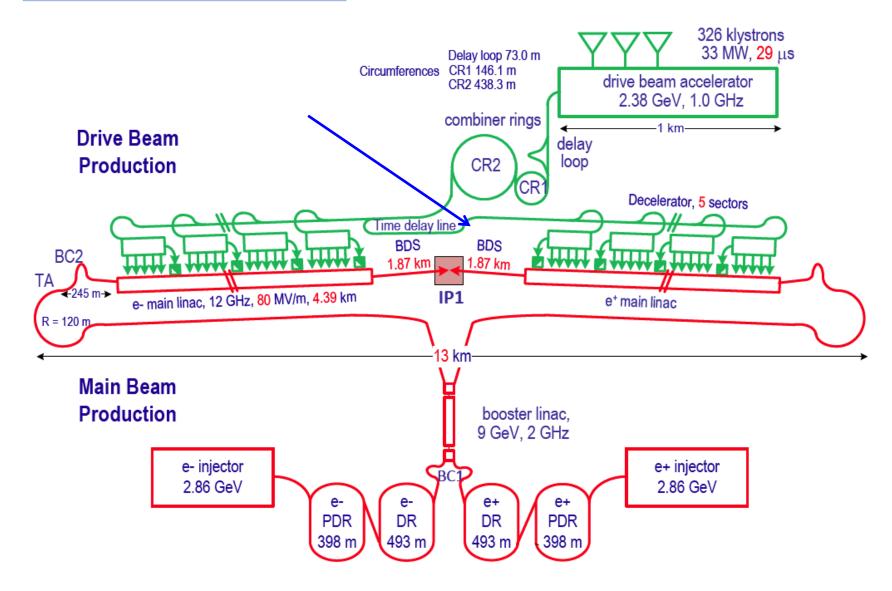
- 30 m

Site implementation

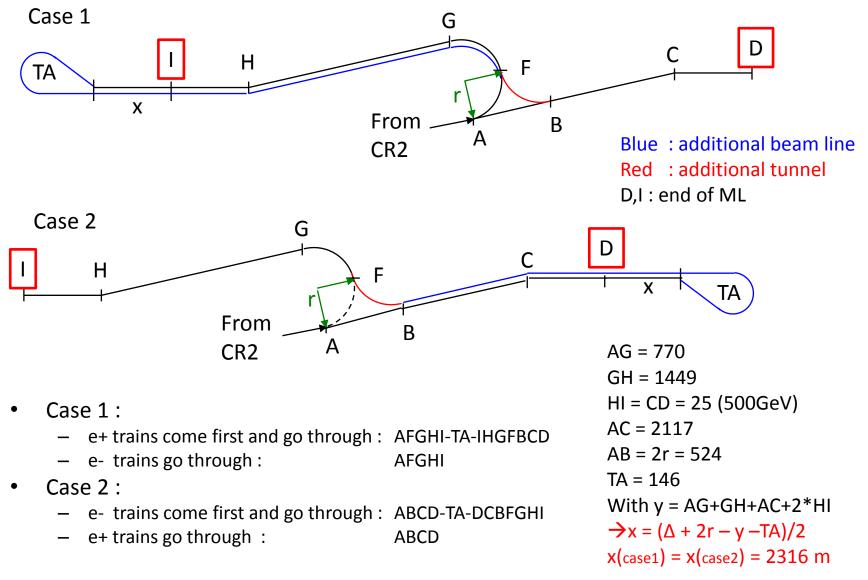
500 GeV delayed transfer for the drive beam

B.Jeanneret, July 2010

Input data

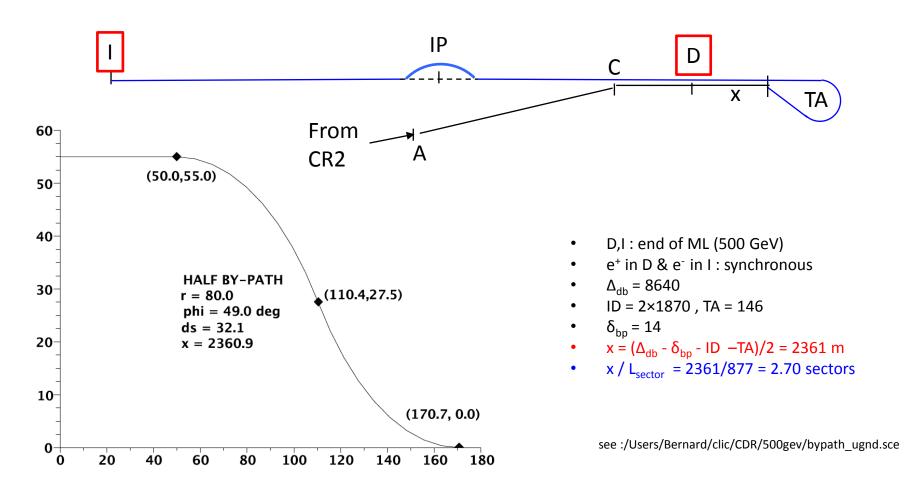

• Time delay between e+ & e- DB train :

 The two sets of 5 trains each 240 ns are produced one after the other with a single Linac


 $-\Delta t = 5 \times 24 \times 240$ ns = 28800 ns $\rightarrow \Delta = 8640$ m

 The trains must be synchronous when passing along the end of the Main Linac

CLIC overall layout – 500 GeV


Coming back to surface

Impact for hardware / through surface

- Case 2 simpler
- x / L_{sector} = 2316/877 = 2.64 sectors
 - one extra DB line to be housed in the main tunnel
- Civ. Eng. :
 - one-quarter circle of surface tunnel to be added
 - Line e⁺ down to tunnel :
 - wide enough to accomodate a 3rd beam line.
 - 1 additionnal turn-around , of type 'DB'
- Additional beam lines:
 - 3909 m (AC-2r+x) of type 'DB-LTL'
 - 1 dedicated turn-around , of type 'DB'

Use a by-path around IP

Impact for hardware / underground by-path

- x / L_{sector} = 2361/877 = 2.7 sectors
 - one extra DB line to be housed in the main tunnel
- Civ. Eng. :
 - 374 m of tunnel to be added for by-path
 - 1 additionnal turn-around , of type 'DB'
- Additional beam lines:
 - 3740 m (DI) of type 'DB-LTL'
 - 1 dedicated turn-around , of type 'DB'
- Beam lines not needed :
 - Surface loop & descent down (2460 m)
- Advantage : disconnected from surface changes for Main Beam