QCD analysis of combined HERA $F_2^{c\bar{c}}$ data and Impact for the LHC

R. Plačakytė

PDF4LHC 29 Nov 2010, DESY

Outline:

- Introduction and motivation
- Scanning of m_c in different heavy flavour schemes
- Predictions of Z/W[±] cross sections at LHC
- Summary

Heavy Quark treatment in PDFs

There are different prescriptions how to treat heavy quarks in PDF fits, i.e. different heavy quark schemes:

Fixed Flavour Number Scheme (FFNS) number of flavours (i) is fixed c(b) quarks massive, only light flavours in the proton i=3(4)

General-Mass Variable Flavour Number Scheme (GM-VFNS)

number of flavours is variable

matched scheme, different implementations used by PDF Fit groups

- charm mass m_C becomes effective model parameter $\rightarrow m_C^{model}$

Zero-Mass Variable Flavour Number Scheme (ZMVFNS) all flavours massless (breaks at $Q^2 \sim m_{HO}^2$)

Motivation:

full QCD analysis of HERA charm data
 this study: PDFs with charm data using existing GM-VFN schemes
 and impact to cross section predictions at LHC

Impact on the LHC predictions

- variation of m_c^{model} changes predictions of Z/W cross sections at LHC by ~3%

> A.M.Cooper-Sarkar, PDF4LHC, March 2010

> > (below b mass threshold)

- sensitivity to charm of the LHC cross section predictions comes from flavour sensitivity of the inclusive DIS data

$$xU = xu + xc$$
 $x\overline{U} = x\overline{u} + x\overline{c}$ $xD = xd + xs$ $x\overline{D} = x\overline{d} + x\overline{s}$

- where U (and D) is fixed by F_2 data larger $m_c^{model} \rightarrow less c$ in sea $\rightarrow more u$
- important at low Q² and low x

HERA charm data

Preliminary F_2^{cc} measurement - most precise determination of F_2^{cc} from HERA

- combination of 9 H1 and ZEUS measurement \rightarrow 5-10% uncertainty
- significant contribution to DIS cross section

- good agreement of HERAPDF1.0 predictions with F_2^{cc} data
- the band represents HERAPDF1.0 uncertainty from m_c^{model} parameter variation (1.35 1.65 GeV)
- data are within the uncertainty band
- \rightarrow can provide significant constraint on m_c^{model}

QCD analysis of F₂^{cc} data

NLO QCD analysis of the preliminary HERA F₂cc data

- together with the published inclusive HERA data (**HERAPDF 1.0**)
- same settings as in HERAPDF 1.0 arXiv:0911.0884
- different implementations of GM-VFN schemes for heavy flavour treatment used in this study:

```
RT standard used by MSTW08 RT optimised [arXiv:1006.5925] used by CTEQ4,5,6HQ S-ACOT-\chi used by CTEQ6.5,6.6,CT10 ZMVFNS used by NNPDF2.0
```

- the optimal m_c^{model} value is determined for each of these schemes $(m_c^{model}$ (opt)), which gives the best description of the HERA data
- PDFs are propagated to MCFM to calculate Z/W[±] cross section predictions

<u>Note</u>: studies of charm data with other schemes e.g. FFNS, ABKM and NNLO (RT) are not yet available, will be added in future

mc model scan

HERA I inclusive

mc model scan

HERA I inclusive

HERA I inclusive + F_2^{cc}

- m_c^{model} (opt) is determined fitting the χ^2 dependance on m_c^{model}

m_c^{model} scan: different HQ schemes

 different schemes have different optimal m_c^{model}

scheme	m _c ^{model} (opt)		
RT standard	1.58		
RT optimised	1.46		
ACOT-full	1.58		
S-ACOT-χ	1.26		
ZMVFNS	1.68		

All models yield similar χ^2 values for $m_c^{model} = m_c^{model}$ (opt) except ZMVFNS which returns significantly worse value

Comparison with data (at mc model (opt))

(★ indicate σ with PDFs at $m_c^{model}(opt)$)

- cross section predictions for each scheme vary $\sim 7\%$ for $1.2 < m_c^{\text{model}} < 1.8 \text{ GeV}$
- predictions for all schemes vary \sim 7% for given m_c^{model}

BUT:

- predictions for m_c^{model} (opt) has much smaller spread:

<1% (~2% with ZMVFNS)

- comparison of W⁺ cross sections as a function of $\alpha_S(M_Z^2)$ G.Watt, PDF4LHC 26.03.2010

R. Plačakytė, 29.11 2010 12

- comparison of W cross sections as a function of $\alpha_S(M_Z^2)$ G.Watt, PDF4LHC 26.03.2010

Summary

Heavy quark treatment in PDFs is essential

- significant impact for LHC cross section predictions

NLO QCD analysis of HERA F₂^{cc} data using various HQ schemes was presented

- m_c model (opt) determined for each HQ scheme with full uncertainty
- with m_c^{model} (opt) uncertainty on the Z/W cross section predictions at LHC is reduced to below 1%

R. Plačakytė, 29.11 2010 14

Back-up slides

m_c^{model} scan: different HQ schemes

RT optimised

H1 and ZEUS (prel.) χ^2 /ndf $m_{\scriptscriptstyle C}^{\scriptscriptstyle model}(opt)$ =1.468 \pm 0.018 GeV 1000 HERAPDF1.0 + $F_2^{c\overline{c}}$ (prel.) RT optimised flexible param 900 standard param 1.4 800 1.2 700 600 m_c^{model} / GeV

 m_c^{model} (opt) = 1.47 \pm 0.02 GeV

ACOT-full

 m_c^{model} (opt) = 1.58 \pm 0.02 GeV

m_c model scan: different HQ schemes

H1 and ZEUS (prel.) $m_c^{\text{model}}(\text{opt})$ =1.254 \pm 0.015 GeV 2000 HERAPDF1.0 + $F_2^{c\overline{c}}$ (prel.) S-ACOT-χ flexible param standard param 2.5 1500 0 1000 1.5 1.5 m_c^{model} / GeV

 m_c^{model} (opt) = 1.25 \pm 0.02 GeV

ZMVFNS

$$m_c^{model}$$
 (opt) = 1.68 \pm 0.01 GeV

PDF determination in HERAPDF 1.0

DGLAP at NLO → QCD predictions

PDFs parametrised (at starting scale Q₀²) using standard parametrisation form:

$$xg(x) = A_{g}x^{B_{g}}(1-x)^{C_{g}},$$

$$xu_{v}(x) = A_{u_{v}}x^{B_{u_{v}}}(1-x)^{C_{u_{v}}}\left(1+E_{u_{v}}x^{2}\right),$$

$$xd_{v}(x) = A_{d_{v}}x^{B_{d_{v}}}(1-x)^{C_{d_{v}}},$$

$$x\bar{U}(x) = A_{\bar{U}}x^{B_{\bar{U}}}(1-x)^{C_{\bar{U}}},$$

$$x\bar{D}(x) = A_{\bar{D}}x^{B_{\bar{D}}}(1-x)^{C_{\bar{D}}}.$$

A: overall normalisation

B: small x behavior

C: $x \rightarrow 1$ shape

The optimal number of parameters chosen by saturation of the χ^2

- central fit with 10 free parameters

xg, xu_v, xd_v, x \bar{D} , x \bar{D} where x \bar{U} =x \bar{u} and x \bar{D} =x \bar{d} +x \bar{s} at the starting scale (x \bar{s} =f_sx \bar{D} with f_s=0.31)

 A_g , A_{uv} , A_{dv} are fixed by sum rules

extra constrains for small x behavior of d- and u-type quarks:

$$B_{uv} = B_{dv}$$
, $B_{\overline{U}} = B_{\overline{D}}$, $A_{\overline{U}} = A_{\overline{D}}(1-f_s)$ for $\overline{u} = \overline{d}$ as $x \to 0$

Analysis Settings

NLO QCD analysis of the preliminary HERA F₂cc data

- together with the published inclusive HERA data (HERAPDF1.0,arXiv:0911.0884)
- standard **HERAPDF1.0** settings used **(qcdnum17.0,** arXiv:1005.1481) $(\alpha_s = 0.1176, \text{ scale } \mu_R = \mu_F = Q^2, \ Q^2_{min} = 3.5 \ \text{GeV}^2)$

with two parametrisation assumptions:

flexible: standard: $xg(x) = A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{25}$ $xf(x) = Ax^{B}(1-x)^{C}(1+Ex^{2})$ $Q^2 = 10. \text{ GeV}^2$ (allows for a negative gluon x g(x) contribution at low x) gluon (ref.) 20 standard flexible 10 $Q_0^2 = 1.4 \text{ GeV}^2$, $Q_0^2 = 1.9 \text{ GeV}^2$, Х m_c^{model} scan: 1.2 - 1.8 GeV m_c^{model} scan: 1.4 - 1.8 GeV

Heavy Quarks at HERA

Heavy quarks at HERA are produced mainly in boson-gluon fusion

- test of pQCD, access to the gluon

Charm contribution to total DIS cross section

- up to 30% at high Q²

Measure heavy qyark structure functions

- direct test of HQ schemes in PDF fits, e.g. charm structure function:

$$\sigma^{cc} \propto F_2^{cc}(x, Q^2) - \frac{y^2}{1 + (1 - y)^2} F_L^{cc}(x, Q^2)$$

Introduction

Preliminary HERA F₂^{cc} measurement

H1 prelim-09-171 ZEUS-prel-09-015

https://www.desy.de/h1zeus/combined_results/index.php?do=heavy_flavours

- significant contribution to DIS cross section
- most precise determination of F₂^{cc} from HERA
 - combination of 9 H1 and ZEUS measurements (HERA I + part of HERA II)
 - different charm tagging methods
 - covers $2 < Q^2 < 1000 \text{ GeV}^2$ and $10^{-5} < x < 10^{-1}$
 - 5-10% uncertainty

Charm measurement: ZMVFNS

Charm measurement at HERA:

- ZMVFNS doesn't describe heavy flavour data

R. Plačakytė, 29.11 2010 22

RT scheme (standard vs optimised)

compared to standard
 RT optimised scheme
 is smooth at threshold

23

R.S. Thorne, PoS (DIS 2010) 053

S-ACOT-χ scheme

ACOT full with generalised slow rescaling = ACOT χ $\chi = x \left[1 + \frac{(\mathbf{n}m_c)^2}{Q^2} \right]$

Comparison of ACOT code with CTEQ (Nadolski/Tung)

- same ACOT code is implemented in h1fitter
- fit results were confirmed by Voica with independent code from Fred Olness
- ACOT χ scheme is (again) used for $m_{_{\mbox{\footnotesize C}}}$ scan studies

Systematic uncertainty on m_c^{model}

- to determine systematic uncertainty on m_C HERAPDF1.0 prescription was used:

- α_{ς} variation (±0.002)
- vary parametrisation (e.g. Bu_v≠Bd_v)
- vary model parameters $(f_s, m_B, Q_{min}^2, Q_0^2)$

Variation	Standard	Lower	Upper	
fs	0.31	0.23	0.38	
m _B 4.75		4.3	5	
Q ² _{min} 3.5		2.5	5	
Q^2_0	1.4	-	1.9	

(uncertainty from Q_0^2 assumed to be symmetric and treated as procedural)

Systematic uncertainties on m_c^{model} obtained for each heavy flavour scheme \rightarrow

scheme	m _c ^{model} (opt)
RT standard	$1.58^{+0.02}_{-0.03}$
RT optimised	$1.46^{+0.02}_{-0.04}$
ACOT-full	$1.58^{+0.03}_{-0.04}$
S-ACOT-χ	$1.26^{+0.02}_{-0.04}$
ZMVFNS	$1.68^{+0.06}_{-0.07}$

Application of m_c^{model} scan: Z/W cross sections at LHC

Z/W cross sections calculated with MCFM 5.7

- same conditions as for the PDF4LHC benchmarking at $\sqrt{s} = 7$ TeV

uncertainty from m_c^{model}
 propagated to Z/W cross sections

scheme	m _c ^{model} (opt)	σ_Z (nb)
RT standard	$1.58^{+0.02}_{-0.03}$	29.27 ^{+0.07} _{-0.11}
RT optimised	$1.46^{+0.02}_{-0.04}$	$29.17_{-0.13}^{+0.07}$
ACOT-full	$1.58^{+0.03}_{-0.04}$	$29.28^{+0.10}_{-0.13}$
S-ACOT-χ	$1.26^{+0.02}_{-0.04}$	$29.37_{-0.15}^{+0.08}$
ZMVFNS	$1.68^{+0.06}_{-0.07}$	$28.71_{-0.20}^{+0.19}$

R. Plačakytė, 29.11 2010 26

Z/W cross sections at LHC: summary

scheme	m _c ^{model} (opt)	χ²/dof	χ^2 /ndp (F_2^{cc})	σ_Z (nb)	$\sigma_{\!\scriptscriptstyle W}^{} + (nb)$	σ_{w} –(nb)
RT standard	$1.58^{+0.02}_{-0.03}$	620.3/621	42.0/41	29.27 ^{+0.07} _{-0.11}	57.82 ^{+0.14} _{-0.22}	40.22 +0.10 -0.15
RT optimised	$1.46^{+0.02}_{-0.04}$	621.6/621	46.5/41	$29.17^{+0.07}_{-0.13}$	$57.75^{+0.14}_{-0.26}$	40.15 ^{+0.10} _{-0.18}
ACOT-full	$1.58^{+0.03}_{-0.04}$	621.2/621	59.9/41	$29.28_{-0.13}^{+0.10}$	$57.93^{+0.18}_{-0.24}$	$40.16^{+0.12}_{-0.16}$
S-ACOT-χ	$1.26^{+0.02}_{-0.04}$	639.7/621	68.5/41	$29.37_{-0.15}^{+0.08}$	$58.06_{-0.30}^{+0.16}$	40.23 +0.11
ZMVFNS	$1.68^{+0.06}_{-0.07}$	667.4/621	88.1/41	$28.71_{-0.20}^{+0.19}$	56.77 ^{+0.33} _{-0.34}	$39.46^{+0.24}_{-0.25}$
		max diff:		0.7%	0.5%	0.2%
	(with ZMVFNS)		2.3%	2.3%	2.0%	

same conclusions with HERAPDF1.5
 (preliminary combined inclusive HERA I+II data)

Systematic uncertainty on mc model

