DUNE "Data Selection" and FD2-VD (Trigger and Data Filter)

Josh Klein CDR Review June 18, 2021

Outline

- Definitions, Requirements, and Constraints
- DUNE Trigger Basics
- Performance to date
- Changes for VD

Data Selection

Data rate from each module ~10 Tb/s Storage <=30 PB/year for all modules (SP-FD-22)

"Data Selection" is not *just* triggering--- May also include region-of-interest selection, highlevel filtering

Like all experimentalists, we are both paranoid and greedy; we would like to keep as much as possible

Data Selection

- Studies to date have been for HD APAs
- We expect algorithms depend only weakly on HD/VD differences
- Will highlight where we expect these to matter

Three Regimes

- "High" Energy interactions producing more than 100 MeV of visible energy
- "Low" Energy Below 100 MeV but practically speaking in 5-20 MeV regime
- Time-correlated non-beam events that come in time-correlated ways, like SN bursts

"High" Energy Triggering

(Requirement SP-DAQ-8) The DAQ shall trigger and acquire data on visible energy deposition > 100 MeV. Data acquisition may be limited to the area in which activity was detected.

(Requirement FD-SciEng 882) The Far Detector shall be > 90% efficient for any interaction that leaves > 100 MeV of visible ionization energy inside the fiducial volume.

 \rightarrow The efficiency covers hardware and software performance of the detector while operating. Visible ionization is in electron equivalent ionization.

- Long baseline analyses assume 100% efficiency at >200 MeV
- Very little acceptance below 200 MeV because of NC background
- K+ from PDK can have $KE < 50$ MeV but total visible energy $~100$ MeV

"Low" Energy Triggering

620 (Requirement) The far detector shall have high efficiency for any interaction leaving < 100 MeV of visible ionization energy inside the fiducial volume.

 \rightarrow This requirement separates the performance at lower energies where supernova, solar events may occur. The lowest threshold is expected to be 5 MeV. The efficiency is expected to be a function of energy in this energy range.

 \rightarrow \rightarrow The efficiency defined here is for TPC or Photon Detector combined.

2321 (Specification) The DAQ shall trigger and acquire data on visible energy deposition > 10 MeV of single neutrino interactions. Those triggers will normally be fired using a pre-scaling factor, in order to limit the data volume.

 \rightarrow Energy here is "visible energy", defined as deposited energy in the active volume as ionization and/or scintillation.

> (We do not anticipate needing a pre-scale at E_{vis} ~10 MeV, but ROI selection is likely)

315 (Requirement) Far detector shall be capable of collecting low energy (<100 MeV) charged current electron neutrino interactions on Ar40 nucleus that arrive in a short period of time (<100 sec) . The final state electron shall be detected and its energy measured.

 \rightarrow Most events from a supernova neutrino burst are neutrino absorption on Ar40 producing electrons from 5 to 100 MeV, arriving < one minute time frame. An electron and a K40 nucleus is in the final state. The total event count from a galactic supernova (10 kpc) is expected to be approximately 3,000 events for 40 kt of LAr.

2263 SP-FD-23 (Specification) The DAQ architecture shall provide a mechanism for triggering on galactic supernova bursts and recording neutrino interactions associated with those bursts over a 30 second period, with a goal of 100 seconds. During this period, the full raw data information must be stored.

 \rightarrow 95% efficiency for a SNB producing at least 60 interactions with a neutrino energy >10 MeV in 12 kt of active detector mass during the first 10 seconds of the burst.

188 (Requirement) The FD data acquisition shall have the capability of notifying the world-wide science community of an astronomical event in a timely way.

 \rightarrow The SNEWs collaboration will require notification within minutes with only 1 false trigger allowed per year. To fulfill this requirement DAQ must have online capability of identifying a real SN burst signal.

 $\rightarrow \rightarrow \rightarrow \sim$ 1 minute processing and response is desirable

We satisfy these requirements with the following general strategies:

- High-energy triggering is as inclusive as possible
- Low-energy triggering exploits TPC topological information to be semi-inclusive, assumes ROI selection to reduce data volume, and provides a summary data stream for ~zero threshold event analyses.
- SN Burst triggers exploit large DAQ buffers and write out everything for 10 s before and 90 s after detected burst

- Activity Finders = Low Energy, High Energy, Exclusive channels…
- Candidate Finder = SN bursts, High E event, beam event, etc.

Trigger Primitives (TPs)

Trigger Primitives (TPs) Hit finding

Example from ProtoDUNE-SP

TP threshold was around 1/4 MIPequivalent, or around 250 keV $_{MF}$ (per wire)

Need to study this for VD strips instead of HD wires Signal/Noise may be different and influence threshold

Raw noise RMS in PD I was 3-4 ADC above pedestal

Trigger Activity Clustering and Cutting

Cannot simply sum up all charge---in 10 ktonnes and a full drift, this is about a GeV of charge.

Need some kind of clustering as first stage of triggering

Radiological rate acceptable* with:

- $N_{\text{adi}} \geq 8$ wires
- Cluster charge sum > 7000 ADC counts
- Max integrated wire charge > 6500 counts
- Max time-over-threshold $>=$ 45 ticks

***acceptable rate was so that 5.4 ms readout of all channels had data rate < 25% of cosmic data rate**

High-Energy Trigger Efficiency

Integrated efficiency ϵ_I is given by : Ì.

but different species have different topologies and thus different efficiencies

0.08 0.09 0.08 Visible Energy[Gev]

D. Rivera

 0.02

 0.03

 0.986 0.986 0.984 0.982 0.9

Can have a higher trigger rate if data/trigger is smaller size:

- 1. Halve readout window
- 2. Write out only APAs with trigger activity (TA)
- 3. Use a much narrower readout (100 µs) window around hits ("zero suppression")
- 4. Fully localize TA and use 100 µs window for readout

Of course, ROI can depend on type of Trigger Candidate

Moving Lower in E

What if we want to reduce neutrons?

Neutrons produce a γ cascade when they capture, electrons are more track-like (But solar and SN neutrinos include de-excitation γs):

Moving Lower in E

Can exploit topology of TPC:

Use (collection-wire) primitives to create a "2D track length cut"

$$
\mathcal{L} = \sqrt{(\mathit{adj}_{\mathit{max}} * 5\mathit{mm})^2 + (\mathcal{TOT}_{\mathit{max}} \times \mathit{v}_{\mathit{drift}})^2}
$$

Supernova Bursts

Additional handle: Time and energy profile

T. Bezerra

Note: we read out *everything* for 100 s if we detect a burst---event efficiency does not matter (much) except outside of that window

Can accommodate more aggressive "trigger activity" threshold but lowering single-interaction threshold hurts without energy-weighting

Not including energy profile

Changes for Vertical Drift

- Orientation of collection strips not critically different from APA collection wires
	- Induction strips/wires not currently used in triggering
	- Impact of a smaller collection pitch will have to be examined
- Signal/noise may be different and require/allow different TP thresholds
	- Top-side electronics may also have different response
- ³⁹Ar rate/channel higher because of higher imaged volume
- PDS System will be different, may allow greater opportunities for photon-based triggering

Summary

- Requirements on data selection exist but are fairly loose
- For HD, requirements satisfied by using TPC collection information
- Low-energy program can also be accommodated with tighter ROI for readout
	- Radiologicals will limit threshold more than system will
- Still need to test high-energy algorithms on VD collection strips
- Future work (PDS inclusion; induction wire Trigger Primitives; more aggressive SN burst finding) moving forward (see A. Thea talk)

Backups

Moving Even Lower in E

- Include u/v wire trigger primitives
	- This will be affected by HD/VD differences
- Write all of them continuously
- Threshold is ~250 keV depending on signal/noise
- Can run "offline" algorithms as sophisticated as desired
- Data will be overwhelmingly $39Ar$

High-Energy Trigger Efficiency

Differential
Triggering Efficiency

J)

Integrated efficiency ϵ_I is given by : Ì.

D. Rivera

A Penn

Performance at PD-SP 1

Horiztonal Muon Trigger (exclusive)

Buffer depth was 1 second

DUNE Trigger Basics

- Primary detector system (TPC) is very slow, data buffered for 10 s
- Leaves plenty of time to exploit TPC topology in trigger
- PDS system can also be used to trigger independently or w/ TPC
- (Calibrations and other auxiliary systems can also trigger)
- System intended to be as *inclusive* as possible
	- e.g., everything with E > threshold
	- Constraint here will be from low-energy backgrounds (later)
- Event readout can be:
	- All channels for some time window \sim drift
	- A narrow region of interest (ROI) in channel and time space
	- A very long time window (for supernovas) up to 100 s for all channels

A quick note about the word "threshold"….

- Trigger Primitives have a "hit" threshold
- Trigger Decision based on various "event" thresholds
- Supernova Bursts have a "burst threshold"
	- Once a burst is triggered, the data is acquired with zero threshold for 100 s

Trigger Primitives (TPs) Hit finding

At ProtoDUNE-SP I tried two approaches:

- 2. Noise RMS-dependent threshold
	- Find baseline and rms via "frugal streaming" (arXiv:1407.1121)
	- Filter (7-tap FTIR)
	- Apply threshold in noise sigma (5 σ for PD-SP I)

TPC Triggering

More Complete Diagram

Exp Penn

DUNE

Trigger Primitives (TPs)
Hit finding

Run 11044, event 5 (timestamp 0x11955baa4c000a0, 2020-03-09 17:22:51 UTC)

Trigger Candidates

Radiological rate acceptable* with:

- $N_{\text{adi}} \geq 8$ wires
- Cluster charge sum > 7000 ADC counts
- Max integrated wire charge > 6500 counts
- Max time-over-threshold >= 45 ticks

***acceptable rate was so that 5.4 ms readout of all channels had data rate < 25% of cosmic data rate**

Moving Lower in E

Region-of-Interest (ROI) Readout

Can have a higher trigger rate if data/trigger is smaller size:

- 1. Halve readout window
	- "Free" because for low E events there is no trigger ambiguity
- 2. Write out only APAs with trigger activity (TA)
	- At low E, pretty safe and big reduction
	- Cosmics require \sim 6 APAs on average
- 3. Use a much narrower readout (100 µs) window around hits ("zero suppression")
	- Big enough for any deconvolution in processing
	- Will definitely do this for laser calibrations
- 4. Fully localize TA and use 100 µs window for readout
	- Most aggressive; need to read out "box" around hit channels,

1 MeV 10 MeV 100 MeV 1 GeV

Energy (MeV)

Of course, ROI can depend on type of Trigger Candidate

35 6/18/2021 Josh Klein | DUNE Triggering

Moving Lower in E

Can exploit topology of TPC:

Use (colletion-wire) primitives to create a "2D track length cut"

$$
\mathcal{L} = \sqrt{(adj_{max} * 5mm)^2 + (TOT_{max} \times v_{drift})^2}
$$

Further Plans

• Including PDS

- Naturally inclusive trigger (e.g., Npe>threshold)
	- Trigger threshold maps to energy pretty cleanly and simply
	- But that also means higher background rates
	- Also will depend on channel-level thresholds
	- And depends strongly on light yield and uniformity
- Efficiency likely easy(-ier) to model
	- Can be calibrated and measured relatively easily
- Can be fast
	- Helps reduce spallation-induced fake supernova bursts
	- But readout buffers are so big (10 s) that speed not critical for trigger decision
- Can reduce background rates via fiducialization---even better for VD!
	- External neutrons and γs will capture/convert near edges of volume
	- Can get lower trigger rates for low-energy physics
	- Might do this in High-Level Filter
- Noise uncorrelated with TPC
	- Can help reject unexpected triggers from noisy wires
- In principle singlet/triplet PID can reject α s for very low-E program with u/g Ar
	- Xenon loading is an interesting opportunity/complication
	- Will need to require nitrogen (and other) contamination to be very low

Implementation at PD-SP 1

- Cosmic rate too high for an inclusive trigger
- Picked reasonably low-rate exclusive channel---horizontal muons
- Allowed us to exercise entire $TP\rightarrow TA\rightarrow TC$ chain

Trigger activity from individual APAs stitched together to form Trigger Candidates (Gaps of up to 4 wires allowed in Trigger Activity cluster)

