
Data handling in the readout system

Roland Sipos
CERN

CDR Review
18th June 2021

2

● Objectives of the readout subsystem
● Functional elements

○ I/O device
○ Trigger Primitive (TP) generation
○ Data request handling
○ Data recording

● Generic readout
○ Design: concepts and models
○ Implementations

● Summary

Overview

3

The DUNE readout subsystem is responsible for:

● Receiving raw data from a variety of front-end electronics
○ FD variants include: WIB, DAPHNE, uTCA TDE

● Processing the in-flight raw data stream
○ Look for errors and handle other data driven aspects (e.g.: calibration)
○ Generate and format Trigger Primitives (TPs) from recognized detector activity

● Responding to data requests from the trigger (with requested time windows of data)
○ Data is buffered in readout units’ memory (RAM)
○ Potentially overlapping windows from order of microseconds to order of seconds
○ Including the unique Supernova Neutrino Burst (SNB) data request

(~100 seconds continuous data recording)

Objectives

4

While internal data organization differs, all packets coming from the electronics shall have a
64b timestamp field and another one that fully specifies the origin.

● WIB frame has a header with 1 ADC value for 256 channels. It’s with fixed arrival rate of fix
sized payloads. The timestamps increment with fixed time delta and are sorted on arrival.

● DAPHNE frame has 375 consecutive ADC values for 1 channel. It’s with variable arrival rate
of fix sized payloads. Also with variable time delta between consecutive frames’ timestamps,
but they are sorted on arrival.

● Data from uTCA TDE boards will have N consecutive ADC values for 64 channels. It’s with
fixed arrival rate of fixed sized payloads. Timestamps are sorted on arrival. (Similar to WIBs.)

Due to the range of characteristics, different functional element implementations are needed!

Data reception

5

The main and only input is raw data from
different front-end electronics. Front-end links
are connected to an I/O device or card (e.g.:
FELIX).

The readout needs to interpret raw data and
find possible problems and errors with and
within data (e.g.: data integrity). A processing
pipeline is responsible for this.

Trigger Primitives (TPs) are “hits” in raw data
that shows physics activity on the front-end
channels. These are generated and sent to the
Data Selection system. (talk from Josh K.)

I/O device

6

Data is temporarily stored in memory buffers. These buffers has certain attributes that
ensures search-ability based on a lookup criteria. A notable example for this, is the lookup
based on the timestamp, where the timestamp can be translated to a position in the buffer.

Latency buffer

7

Incoming data requests are handled via accessing the latency buffer then match and extract
the requested data with the given time window. Interfaces are provided by the application
framework (previous talk from Kurt B.).

Responding to data requests

8

Data leaving the latency buffer can be streamed to a transient data store, which is local to
the readout unit. The recorded data are transferred to other subsystems with additional
metadata, notifications and acknowledgements.

Recorded data

9

Functional elements implementations’ are a mixture of
firmware and software, and COTS and custom
hardware:

● High rate data pre-processing in FPGA

○ Data reception and aggregation
○ Trigger primitive generation

● Buffering and post-processing on COTS hardware
and custom software implementations
○ Post-formatting of TP data
○ Buffering and data request handling
○ Software driven storage

Implementation principles

Firmware

Software

10

The readout subsystem promotes generic and reusable design principles of the
functional elements:

● Support for multiple front-end types (transparent to data providers)
● Exact and well defined generic interfaces (concepts)
● Front-end specific specializations (models)

With the following constraints:
○ Homogeneous data path: Won’t mix FE data types and their solutions
○ Concurrent access efficiency: Design needs to support highly concurrent

access and corresponding rates

Readout design

11

Generic readout package
● Demonstrates the handling of different FE type functionalities

Front-end receiver based on the FELIX: flxlibs
● Showcases real FE hardware handled by the FELIX and integration with the

generic readout

Details on Trigger Primitive generation offloading firmware blocks
● Proven solutions to offload CPU intensive tasks to hardware accelerators

Summary on technical details and conclusions of the readout of ProtoDUNE-SP
● Technology review on readout tasks and their CPU offloading

Implementation details

https://github.com/DUNE-DAQ/readout
https://github.com/DUNE-DAQ/flxlibs
https://gitlab.cern.ch/dune-daq/readout/dtp-firmware
https://indico.fnal.gov/event/44240/

12

● The readout subsystem has clear requirements and design concepts

● Most of its functional elements were validated in ProtoDUNE-SP

● Now we are in the detailed design phase based on the previous experiences

● The main target is to have a modular and extensible readout system

Summary

13

End
Thank you for your attention!

