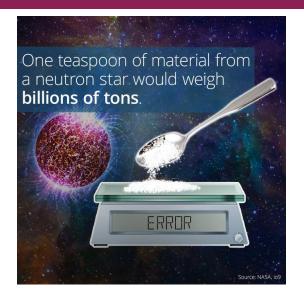
Dark matter in neutron stars

Violetta Sagun

Centre for Physics of the University of Coimbra (CFisUC), University of Coimbra

Neutron star

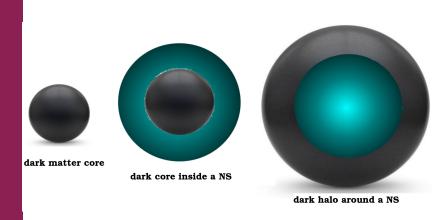
- the last stage of massive star evolution, produced in core collapse supernova explosion. Usually detected as a pulsar
- the most compact and exotic astrophysical objects in the universe that are accessible by direct observations
- the most extreme objects in terms of the rotation speed, density, radius, magnetic field, etc.



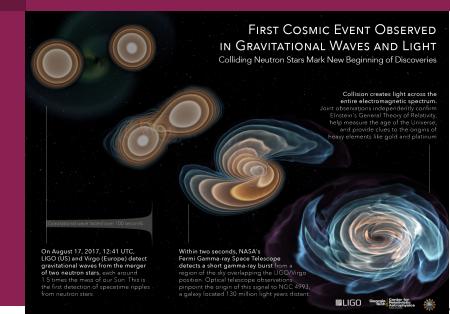
	Neutron star	White dwarf	Sun
$M_{max}(M_{\odot})$	2	1.44	1
R (km)	11-12	10 ⁴	$7 \cdot 10^5$
$n_c (g/cm^3)$	$10^{14}-10^{15}$	10 ⁷	10^{2}
rotation speed (s)	$10^{-3}-1$	100	$2 \cdot 10^{6}$
B (G)	$10^8 - 10^{16}$	100	1
T (K)	10^6-10^{11}	10 ³	10 ⁵

Neutron star has a size of Lisbon

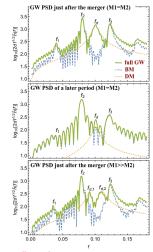
A teaspoon of neutron star matter



Dark matter candidates



credits: Symmetry magazine


Dark matter and neutron star structure

Coalescence of a binary system of two neutron stars

Effect of DM on GW waveform

J. Ellis et al., PLB, 781, 607 (2018) M. Bezares et al., PRD, 100, 044049 (2019) The DM cores may produce a supplementary peak in the characteristic GW spectrum of NS mergers, which can be clearly distinguished from the features induced by the baryon component

Thanks for your attention!

