

ACF bonding update and analysis of ACF interconnect yield from Timepix3 ACF test-beam data from DESY

WG vertex and tracking meeting 20/05/2021

Mateus Vicente (CERN)

ACF in the industry

ACF is the dominating interconnection technology in the display industry

- Adhesive film embedded with conductive micro-particles (CP)
 - Particles are compressed (only vertically) and connect electrically the pads of the devices
 - Mechanical attachment is achieved with the thin adhesive layer

"Hybridization" ACF: 18 µm thick with 3 µm CPs: Bonding pressure of 300~800 kgf/cm²

Timepix3: 256x256 * 320 μ m² \approx 0.20 cm² \rightarrow <u>61~163 kgf</u>

2

EP

mvicente@cern.ch - 20/05/21

R&D

In-house flip-chip hybridization

- Semi-automatic flip-chip bonder, installed at Geneva University
 - Post-bonding accuracy 1-2 μm achieved and planarity < 100's μrad</p>
 - Heating up to 400 °C and force applied by bonding arm up to 100 kg

Timepix3-ACF-sensor assembly cross-section

Timepix3 hybridization with ACF

first tests – Bonding optimization

- 1. Timepix3 matrix fully covered with ACF → Low connectivity yield (<500 pixels)
- 2. sample covering $\sim 30\%$ of the matrix \rightarrow Uniform and high yield connectivity)
- 3. sample with ~50% coverage → Large area with good connectivity, low yield in the central region

Proof-of-concept achieved: Successful pixel matrix bonding of up to 1 cm² (so far)

Optimization on going to reduce the necessary bonding force

Timepix3 hybridization with ACF Bonding/UBM optimization

- ENIG/ENEPIG can be re-worked (only increasing, not decreasing)
- **First idea:** To increase the size of the UBM pad in one of the devices
 - A higher UBM pad might decrease the volume of glue being squeezed out
 - One device keeps the UBM original size, making the bonding area to remain the same
- Two Timepix3 sensor devices (ENEPIG platted at PacTech) were reworked at CERN
 - +5 μm Ni added to the already existing Pd
 - One sample for mechanical cross-section and one for source measurement

mvicente@cern.ch - 20/05/21

Timepix3 hybridization with ACF

Bonding optimization – Resulting assemblies

- □ Cross-section indicates +5 µm of additional Ni
 - Pad isotropic growth: +10 µm in diameter and +5 µm in height
- Source measurement (sample with 100% ACF coverage) indicates possible bonding improvement

Timepix3 assembly with original ENEPIG

Timepix3 assembly with re-worked pad

W43-E11 Sr⁹⁰ source hit map

FP

mvicente@cern.ch - 20/05/21

R&D

Test-beam at DESY

DESY telescope and W43-I3 sample

7

W43-I3 in the beam

W43-I3 Hitmap

EP R&D

mvicente@cern.ch - 20/05/21

Track reconstruction

Tracks Chi2/ndof and 3rd plane residuals

ACF Timepix3 W43-I3 – Hit Map

EP R&D

Low threshold (run 6601)

High threshold (run 6614)

ACF Timepix3 W43-I3 – Associated Clusters

EP R&D

Low threshold (run 6601)

ACF Timepix3 W43-I3 – Associated Clusters

EP R&D mvicente@cern.ch - 20/05/21

High threshold (run 6614)

ACF Timepix3 W43-I3 – DUT residuals and cluster size

EP R&D mvicente@cern.ch - 20/05/21

CERM

Efficiency profiles in corry

Simplified code

1 f	or(auto& track : tracks) {
2	bool has_associated_cluster = false;
3	auto globalIntercept = DUT->getIntercept(track.get());
4	auto localIntercept = DUT->globalToLocal(globalIntercept);
5	
6	auto associated_clusters = track->getAssociatedClusters(DUT);
7	if(associated_clusters.size() > 0) {
8	auto cluster = track->getClosestCluster(DUT);
9	has_associated_cluster = true;
10	auto pixels = cluster->pixels();
11	for(auto& pixel: pixels) {
12	if(pixel->column() == static_cast <int>(DUT->getColumn(localIntercept)) &&</int>
13	pixel->row() == static_cast <int>(DUT->getRow(localIntercept))) {</int>
14	<pre>pixelEfficiency_TProfile->Fill(pixel->column(), pixel->row(), true);</pre>
15	if(track_within_inPixel_ROI) pixelEfficiencyROI_TProfile->Fill(pixel->column(), pixel->row(), true);
16	}
17	}
18	}
19	
20	if(!has_associated_cluster){
21	pixelEfficiency_TProfile->Fill(DUT ->getColumn(localIntercept), DUT->getRow(localIntercept), false);
22	if(track_within_inPixel_ROI) pixelEfficiencyROI_TProfile->Fill(DUT ->getColumn(localIntercept), DUT ->getRow(localIntercept), false);
23	}
24	
25	hChipEfficiencyMap trackPos TProfile->Fill(DUT->getColumn(localIntercept), DUT->getRow(localIntercept), has associated cluster);

EP R&D

mvicente@cern.ch - 20/05/21

26 }

ACF Timepix3 W43-I3 – Chip Efficiency (track position)

mvicente@cern.ch – 20/05/21

EP

R&D

ACF Timepix3

W43-I3 – Chip Efficiency (associated pixel pos.)

EP R&D

ACF Timepix3

W43-I3 – Chip Efficiency (associated pixel-ROI)

EP R&D

Summary and next steps

- Optimization of the device bonding topology might help to increase pixel hybridization yield
 - Re-work of UBM pad possible at CERN

- Requires close follow-up for consistent platting and results
- Estimated 5µm increase in the pad height
- New sample with 100% ACF coverage and with increased pad shows a bonding improvement
 - w.r.t. the first sample (also with 100% ACF coverage)
- Tested ACF Timepix3 assembly (with 30% ACF coverage) at DESY TB
 - Data analysis and interpretation still on-going
 - Next: Per-pixel efficiency curve (as function of threshold and bias-voltage)
 - Quantitative results limited by statistics available
- Two more samples to be tested at DESY TB when possible
 - Sample with 50% ACF coverage (#3 @ slide 7) and new sample with re-worked UBM pad
- CLICpix2 assemblies with new sensors from FBK and particle aligned ACF