

The versatile detectors used for research at ISOLDE

Magdalena Kowalska CERN, on behalf of the ISOLDE physics team

With input from L. Fraile, R. Garcia Ruiz, R. Lica, S. Malbrunot-Ettenauer, M. Pfutzner, M. Mougeout, S. Sels, P. Van Duppen, U. Wahl

Outline

- ISOLDE facility at CERN
- ISOLDE wide range of particle and photon detectors
- Selected examples
- Outlook and summary

ISOLDE at CERN

ISOLDE radio-nuclei

ISOLDE experiments

A dozen permanent and travelling experimental setups 100 scientific proposal approved by INTC committee 500 – 900 researchers from around the world

Post-accelerated RIBs, up to 10 MeV/u

Low-energy RIBs, up up to 60 keV energy

ISOLDE detectors and research topics

Gamma-ray detectors at ISOLDE

ISOLDE gamma-ray detectors

ISOLDE particle detectors

- To detect particles emitted in decays or reactions of unstable nuclei:
- Alphas
- Betas
- Protons
- Neutrons
- Other emitted (light particles), e.g. deuterons

What is required:

- Energy
- Time of emission
- Emission direction

Used and tested types of detectors:

- Si strip detector
- Time projection chamber
- TIMEPIX

ISOLDE gamma-ray detectors

ISS: charged particle detection

ISOLDE Solenoidal

Linear relationship between E_{cm} and E_{lab.}

1st ISS detectors in 2018

- Used HELIOS solenoid (Argonne) 24 resistive strip detectors (PSD) + electronics and DAQ
- Position determined though comparison of signals from each side of detectors

Contact: D. Sharp, U Manchester; L. Gaffney, U Liverpool, et al.

T.L. Tang et al., Phys. Rev. Lett. 124, 062502 (2020)

ISS detectors in 2021

6-sided Si array: 4 double-sided silicon-strip (DSSS) detectors + ASICs readout on each side

Each detector:

- 128 x 0.95mm strips along detector length
- 11 x 2mm along width
- 3336 channels

Total Si length: 510.4mm (486.4mm active)

- ~70% coverage in azimuthal angle
- Total coverage ~66% (2018: HELIOS PSD ~42%)

New gas-filled recoil detector for recoil identification:

- Position-sensitive multi-wire proportional counter
- Followed by segmented gas-filled ion chamber
- Digitized signals sample full dE/dx.
- Count rate up to 100kHz

Contact: D. Sharp, U Manchester; L. Gaffney, U Liverpool

Optical TPC: charged-particle imaging

G. Charpak, W. Dominik, J. P. Farbe, J. Gaudaen, F. Sauli, and M. Suzuki, "Studies of light emission by continuously sensitive avalanche chambers," NIM A269 (1988) 142

Contact: M. Pfutzner, Warsaw University

Warsaw OTPC at ISOLDE

Studying rare decays with particle emission

Warsaw OTPC at other facilities

Evidence of 2-proton radioactivity

NSCL, USA: ⁵⁸Ni @ 161 MeV/u + Ni \rightarrow ⁴⁵Fe, ⁴⁸Ni

Miernik et al., Phys. Rev. Lett. 99 (2007) 192501 Pomorski et al., Phys. Rev. C 83 (2011) 061303(R)

Physical Review C 50th Anniversary Milestones

First observation of two-proton radioactivity in ⁴⁸Ni

A rare form of radioactivity, in which a proton-laden nucleus decays toward stability via the simultaneous emission of two protons, was observed for ⁴⁸Ni. Using an optical time-projection chamber, the two-proton emission of four ⁴⁸Ni nuclei produced at the National Superconducting Cyclotron Laboratory was captured for the first time on CCD camera, marking a new era of optical detection of sub-atomic charged-particle processes in nuclear physics.

First observation of two-proton radioactivity in ⁴⁸Ni

M. Pomorski, M. Pfützner, W. Dominik, R. Grzywacz, T. Baumann, J. S. Berryman, H. Czyrkowski, R. Dąbrowski, T. Ginter, J. Johnson, G. Kamiński, A. Kuźniak, N. Larson, S. N. Liddick, M. Madurga, C. Mazzocchi, S. Mianowski, K. Miernik, D. Miller, S. Paulauskas, J. Pereira, K. P. Rykaczewski, A. Stolz, and S. Suchyta

EC-SLI: (beta) emission channeling

Depending on lattice site of probe atoms => emitted β^{-} particles are channeled or blocked on their way out of crystal

EC-SLI with Si pad detectors

- 3x3 cm², 22x22 pixel (1.3x1.3 mm²) detectors developed at CERN (Peter Weilhammer *et al*) in 1990s as X-ray detectors for PET demonstrators
- Self-triggered readout (VATA-GP3 chips): count rate 3.5 kHz with negligible dead time, saturation at 5 kHz, for on-line measurements
- EC-SLI "Workhorse" detectors since 20 years: a successful spin-off case of CERN detector development

¹²¹Sn (27 h) in diamond

U. Wahl *et al.,* NIMA 524 (2004) 245 U. Wahl *et al.,* PRL 125 (2020) 045301

Contact: U. Wahl, Lisbon

EC-SLI with Si Timepix quad detectors

- 3x3 cm2, 512x512 pixel (55'55 mm2) detectors developed by Medipix@CERN collaboration (Michael Campbell et al)
- Needs clustering algorithm
 to identify β- tracks

²⁷Mg (9.5 min) *p*-type dopant in GaN (material used in white LEDs)

- Tests successful, but frame-based readout of Timepix 2 (e.g. 4 kHz count rate requires 10 frames/s => 50% dead time) proved too slow for EC-SLI routine applications
- Timepix 3 detectors (with faster, data-driven readout in the Mcounts/s range) envisaged to replace the aging pad detectors in the near future

E. Bosne, Emission Channeling Lattice Location Studies in Semiconductors using Highly Pixellated Timepix Detectors, CERN Thesis 2020-239

Trigered pixel

IDS

- HPGe detectors (4 permanent Clovers + extra)
- Ancillary detectors (LaBr3, plastic scintillator, silicon, n
- ➤ Tape station
- In-Source Laser Spectroscopy Studies

Contact: Razvan LICA, IFIN-HH, Romania

IDS

IDS + fast timing

IDS + fast timing

SiPMs developed in-house at IFIN-HH coupled to LaBr3(Ce)

3" crystals with SiPM

Contact: R. Lica, IFIN-HH, Romania, L. Fraile, Madrid

IDS particle detection MAGISOL

- 4 HPGe Clover-shape detectors at forward angles
 + Si box: 5 Double-Sided Si Strip Detectors (DSSSD), 4 Pads
- DAQ: ISOLDE MBS and IDS Nutaq use in parallel (synchronized)
- Beam implanted on ¹²C foil or tape

MAGISOL detectors, electronics and DAQ:

- 165 ch: Mesytec preamplifiers (2xMPR64, 2xMPR32)
- Mesytec STM16+ shapers

Contact: H. Fynbo, K. Riisager, U Copenhagen

H. Fynbo, O. Tengblad, O. Kirsebom, J. Phys. G 44 (2017), 044005 O. Kisebom et al., Phys. Rev. Lett. 121, 142701 (2018)

Neutron spectroscopy (INDiE)

• TOF detector, inspired by VANDLE detector (UTK, USA)

Contact: M. Madurga, U Tennessee - Knoxville

IDS high beta-gamma efficiency

Detection setup

- 5 Clover-shape Ge detectors
- \bullet 4 π plastic scintillator around implantation point
- 5th Clover detector can be placed at a specific angle to perform <u>angular</u> <u>correlation studies</u>.
- Absolute β efficiency 90(5)
 % (single/beta gated ratios)
- Absolute γ efficiency 4% @1MeV Using GEANT4 to extrapolate

Contact: R. Lica

R. Lica et al., Phys. Rev. C 100, 034306 (2019)

Conversion electron spectroscopy

- Annular Si detector with 24 segments
- Ethanol cooled to -20°C
- FWHM at 320 keV around 6-8 keV energy

Contact: J. Pakarinen, Jyvaskyla

P. Papadakis et al., Eur. Phys. J. A. 54:42, 2018

IDS DAQ

Digital DAQ able to run all the different configurations

IDS Configuration	Detectors	Total Channels	OLD DAQ
Particle spectroscopy	4 Clovers + 5 DSSSDs (5 x 32 ch) + 4 PAD (4 x 2 ch) + Logic (6 ch)	190	NUTAQ + MBS
Neutron Spectr. (INDiE)	4 Clovers + 26 bars (26 x 2 ch, traces) + Beta (2 ch, traces) + Logic	76	PIXIE
Conversion Electron Spectroscopy	5 Clovers + SPEDE (24 ch) + Beta (1 ch) + Logic	51	NUTAQ
High beta-gamma efficiency	5-6 Clovers + Beta (2 ch) + Logic	32	NUTAQ
Fast-timing	4 Clovers (4 x 4 ch) + 2 LaBr + Beta (1 ch) + 3 TAC + Logic	28	NUTAQ

 NUTAQ: 100 MHz, 14 bit ADC, max. 80 ch (5 x 16)

 PIXIE:
 250 MHz, 16 bit ADC, max. 208 ch (13 x 16 / crate) -> tested and installed in 2020

 FEBEX:
 100 MHz, 14 bit ADC, 16 ch / module. (v4)

High-purity germanium gamma detectors

Absolute γ -ray peak detection efficiency (with addback) IDS: GEANT4 simulations

LUCRECIA

• Permanent TAS setup at "Lucrecia"

- Main crystal: NaI(TI) cilinder of big dimensions (\emptyset 38 cm x 38 cm);
- Ancillary detectors:
 - plastic scintillator
 - Ge telescope (planar/coaxial)

Summary and oulook

- Number and versatility of ISOLDE detectors matches that of the unstable nuclei it produces
- This talk: examples of detectors for gamma-rays, charged particles, neutrons
- Not covered in this talk: ion and atom detectors
- Aim: give an overview of ISOLDE detectors and trigger discussions, collaborations with the respective groups