

The versatile detectors used for research at ISOLDE

Magdalena Kowalska CERN, on behalf of the ISOLDE physics team

With input from L. Fraile, R. Garcia Ruiz, R. Lica, S. Malbrunot-Ettenauer, M. Pfutzner, M. Mougeout, S. Sels, P. Van Duppen, U. Wahl

Outline

- ISOLDE facility at CERN
- ISOLDE wide range of particle and photon detectors
- Selected examples
- Outlook and summary

ISOLDE at CERN

ISOLDE radio-nuclei

ISOLDE experiments

A dozen permanent and travelling experimental setups 100 scientific proposal approved by INTC committee 500 – 900 researchers from around the world

Post-accelerated RIBs, up to 10 MeV/u

Low-energy RIBs, up up to 60 keV energy

ISOLDE detectors and research topics

Gamma-ray detectors at ISOLDE

ISOLDE gamma-ray detectors

ISOLDE particle detectors

- To detect particles emitted in decays or reactions of unstable nuclei:
- Alphas
- Betas
- Protons
- Neutrons
- Other emitted (light particles), e.g. deuterons

What is required:

- Energy
- Time of emission
- Emission direction

Used and tested types of detectors:

- Si strip detector
- Time projection chamber
- TIMEPIX

ISS: charged particle detection

ISOLDE Solenoidal

Linear relationship between E_{cm} and E_{lab.}

1st ISS detectors in 2018

- Used HELIOS solenoid (Argonne) 24 resistive strip detectors (PSD) + electronics and DAQ
- Position determined though comparison of signals from each side of detectors

Contact: D. Sharp, U Manchester; L. Gaffney, U Liverpool, et al.

T.L. Tang et al., Phys. Rev. Lett. 124, 062502 (2020)

ISS detectors in 2021

6-sided Si array: 4 double-sided silicon-strip (DSSS) detectors + ASICs readout on each side

Each detector:

- 128 x 0.95mm strips along detector length
- 11 x 2mm along width
- 3336 channels

Total Si length: 510.4mm (486.4mm active)

- ~70% coverage in azimuthal angle
- Total coverage ~66% (2018: HELIOS PSD ~42%)

New gas-filled recoil detector for recoil identification:

- Position-sensitive multi-wire proportional counter
- Followed by segmented gas-filled ion chamber
- Digitized signals sample full dE/dx.
- Count rate up to 100kHz

Contact: D. Sharp, U Manchester; L. Gaffney, U Liverpool

Optical TPC: charged-particle imaging

G. Charpak, W. Dominik, J. P. Farbe, J. Gaudaen, F. Sauli, and M. Suzuki, "Studies of light emission by continuously sensitive avalanche chambers," NIM A269 (1988) 142

Contact: M. Pfutzner, Warsaw University

Warsaw OTPC at ISOLDE

Studying rare decays with particle emission

Warsaw OTPC at other facilities

Evidence of 2-proton radioactivity

NSCL, USA: ⁵⁸Ni @ 161 MeV/u + Ni \rightarrow ⁴⁵Fe, ⁴⁸Ni

Miernik et al., Phys. Rev. Lett. 99 (2007) 192501 Pomorski et al., Phys. Rev. C 83 (2011) 061303(R)

Physical Review C 50th Anniversary Milestones

First observation of two-proton radioactivity in ⁴⁸Ni

A rare form of radioactivity, in which a proton-laden nucleus decays toward stability via the simultaneous emission of two protons, was observed for ⁴⁸Ni. Using an optical time-projection chamber, the two-proton emission of four ⁴⁸Ni nuclei produced at the National Superconducting Cyclotron Laboratory was captured for the first time on CCD camera, marking a new era of optical detection of sub-atomic charged-particle processes in nuclear physics.

First observation of two-proton radioactivity in ⁴⁸Ni

M. Pomorski, M. Pfützner, W. Dominik, R. Grzywacz, T. Baumann, J. S. Berryman, H. Czyrkowski, R. Dąbrowski, T. Ginter, J. Johnson, G. Kamiński, A. Kuźniak, N. Larson, S. N. Liddick, M. Madurga, C. Mazzocchi, S. Mianowski, K. Miernik, D. Miller, S. Paulauskas, J. Pereira, K. P. Rykaczewski, A. Stolz, and S. Suchyta

EC-SLI: (beta) emission channeling

Depending on lattice site of probe atoms => emitted β^{-} particles are channeled or blocked on their way out of crystal

EC-SLI with Si pad detectors

- 3x3 cm², 22x22 pixel (1.3x1.3 mm²) detectors developed at CERN (Peter Weilhammer *et al*) in 1990s as X-ray detectors for PET demonstrators
- Self-triggered readout (VATA-GP3 chips): count rate 3.5 kHz with negligible dead time, saturation at 5 kHz, for on-line measurements
- EC-SLI "Workhorse" detectors since 20 years: a successful spin-off case of CERN detector development

¹²¹Sn (27 h) in diamond

U. Wahl *et al.,* NIMA 524 (2004) 245 U. Wahl *et al.,* PRL 125 (2020) 045301

Contact: U. Wahl, Lisbon

EC-SLI with Si Timepix quad detectors

- 3x3 cm2, 512x512 pixel (55'55 mm2) detectors developed by Medipix@CERN collaboration (Michael Campbell et al)
- Needs clustering algorithm
 to identify β- tracks

²⁷Mg (9.5 min) *p*-type dopant in GaN (material used in white LEDs)

- Tests successful, but frame-based readout of Timepix 2 (e.g. 4 kHz count rate requires 10 frames/s => 50% dead time) proved too slow for EC-SLI routine applications
- Timepix 3 detectors (with faster, data-driven readout in the Mcounts/s range) envisaged to replace the aging pad detectors in the near future

E. Bosne, Emission Channeling Lattice Location Studies in Semiconductors using Highly Pixellated Timepix Detectors, CERN Thesis 2020-239

Trigered pixel

IDS

- HPGe detectors (4 permanent Clovers + extra)
- Ancillary detectors (LaBr3, plastic scintillator, silicon, n
- ➤ Tape station
- In-Source Laser Spectroscopy Studies

Contact: Razvan LICA, IFIN-HH, Romania

IDS

IDS + fast timing

IDS + fast timing

SiPMs developed in-house at IFIN-HH coupled to LaBr3(Ce)

3" crystals with SiPM

Contact: R. Lica, IFIN-HH, Romania, L. Fraile, Madrid

IDS particle detection MAGISOL

- 4 HPGe Clover-shape detectors at forward angles
 + Si box: 5 Double-Sided Si Strip Detectors (DSSSD), 4 Pads
- DAQ: ISOLDE MBS and IDS Nutaq use in parallel (synchronized)
- Beam implanted on ¹²C foil or tape

MAGISOL detectors, electronics and DAQ:

- 165 ch: Mesytec preamplifiers (2xMPR64, 2xMPR32)
- Mesytec STM16+ shapers

Contact: H. Fynbo, K. Riisager, U Copenhagen

H. Fynbo, O. Tengblad, O. Kirsebom, J. Phys. G 44 (2017), 044005 O. Kisebom et al., Phys. Rev. Lett. 121, 142701 (2018)

Neutron spectroscopy (INDiE)

• TOF detector, inspired by VANDLE detector (UTK, USA)

Contact: M. Madurga, U Tennessee - Knoxville

IDS high beta-gamma efficiency

Detection setup

- 5 Clover-shape Ge detectors
- \bullet 4 π plastic scintillator around implantation point
- 5th Clover detector can be placed at a specific angle to perform <u>angular</u> <u>correlation studies</u>.
- Absolute β efficiency 90(5)
 % (single/beta gated ratios)
- Absolute γ efficiency 4% @1MeV Using GEANT4 to extrapolate

Contact: R. Lica

R. Lica et al., Phys. Rev. C 100, 034306 (2019)

Conversion electron spectroscopy

- Annular Si detector with 24 segments
- Ethanol cooled to -20°C
- FWHM at 320 keV around 6-8 keV energy

Contact: J. Pakarinen, Jyvaskyla

P. Papadakis et al., Eur. Phys. J. A. 54:42, 2018

IDS DAQ

Digital DAQ able to run all the different configurations

IDS Configuration	Detectors	Total Channels	OLD DAQ
Particle spectroscopy	4 Clovers + 5 DSSSDs (5 x 32 ch) + 4 PAD (4 x 2 ch) + Logic (6 ch)	190	NUTAQ + MBS
Neutron Spectr. (INDiE)	4 Clovers + 26 bars (26 x 2 ch, traces) + Beta (2 ch, traces) + Logic	76	PIXIE
Conversion Electron Spectroscopy	5 Clovers + SPEDE (24 ch) + Beta (1 ch) + Logic	51	NUTAQ
High beta-gamma efficiency	5-6 Clovers + Beta (2 ch) + Logic	32	NUTAQ
Fast-timing	4 Clovers (4 x 4 ch) + 2 LaBr + Beta (1 ch) + 3 TAC + Logic	28	NUTAQ

 NUTAQ: 100 MHz, 14 bit ADC, max. 80 ch (5 x 16)

 PIXIE:
 250 MHz, 16 bit ADC, max. 208 ch (13 x 16 / crate) -> tested and installed in 2020

 FEBEX:
 100 MHz, 14 bit ADC, 16 ch / module. (v4)

High-purity germanium gamma detectors

Absolute γ -ray peak detection efficiency (with addback) IDS: GEANT4 simulations

LUCRECIA

• Permanent TAS setup at "Lucrecia"

- Main crystal: NaI(TI) cilinder of big dimensions (\emptyset 38 cm x 38 cm);
- Ancillary detectors:
 - plastic scintillator
 - Ge telescope (planar/coaxial)

Summary and oulook

- Number and versatility of ISOLDE detectors matches that of the unstable nuclei it produces
- This talk: examples of detectors for gamma-rays, charged particles, neutrons
- Not covered in this talk: ion and atom detectors
- Aim: give an overview of ISOLDE detectors and trigger discussions, collaborations with the respective groups

Fast timing

Contact: L. Fraile, UCM, Madrid

The Advanced Time-Delayed ßyy(t) method

[H. Mach et al., NPA 523 (1991) 197]

HPGe: BRANCH SELECTION

High energy resolution Poor time response Plastic β scintillator: TIMING Fast response Efficient start detector

LaBr₃(Ce)/BaF₂: TIMING Fast response γ-detectors Stop detectors

 \rightarrow Double coincidences: $\beta \chi$: beta-Ge and beta-LaBr₃

 \rightarrow Triple coincidences $\beta \chi \chi$: beta-Ge-Ge and beta-Ge-LaBr₃

ISOLDE Decay Station

- 4 Clover HPGe ~ 3.7% eff. @600keV
- 2 LaBr₃(Ce) ~ 4% (2% each)
 @600keV (or up to 6 detectors)
- 1 Plastic Scintillator ~ 20% eff.
- DAQ Digital system
- Analog TACs

Movable tape system to remove activity

Fast-timing, GFN-UCM

- Analog timing processing: ORTEC CFD and 3 TAC for fast-timing
- Digital DAQ Nutaq / XIA Pixie

Detectors

Pr:LuAG

CLYC

 \mathbf{SrI}_2

 $LaBr_3(Ce)$

Tipo	Estructura	Cantidad
Alcalinos	LaBr ₃ (Ce)	1
	NaI(Tl)	3
	CsI(Tl)	2
	KI(Tl)	1
No Alaslinas	BaF ₂	1
	GSO	1
	LYSO	1
ino Alcalinos	BGO	1
	LFS	2
	MLS	64

Instituto de Física de Partículas y del Cosmos

Si PMs and boards

Grupo de Física Nuclear

Array 6x6 MicroFJ-30035 (SensL)

Array 8x8 PA3325-WB (<u>Ketek</u>)

Array 2x2 MicroFJ-60035 (SensL)

Grupo de Física Nuclear

Array 3x3 PM3325-WB (<u>Ketek</u>) Array 3x3 MicroFJ-30035 (<u>SensL</u>)

Cross Array 2x2 MicroFJ-60035 (SensL)

LaBr3

1-inch cylindrical LaBr₃(Ce) crystal

Optimization procedure: PARAMETERS

LaBr3

CrossMark

Performance evaluation of novel LaBr₃(Ce) scintillator geometries for fast-timing applications

V. Vedia^{a,*}, M. Carmona-Gallardo^a, L.M. Fraile^a, H. Mach^{a,b,1}, J.M. Udías^a

⁴ Grupo de Fisica Nuclear, Facultad de CC. Fisicas, Universidad Complutense, CEI Moncloa, 28040 Madrid, Spain ^b National Centre for Nuclear Research, Division for Nuclear Physics, BP1, Warsaw, Poland

- Design of scintillator shapes and geometries for fast timing applications
- Optimization of parameters of readout using fast PMTs and analog electronics
- Best time resolution to-date <u>obatined</u>

FWHM time resolution: 110±3 ps @ ⁶⁰Co 158±3 ps @ ²²Na 511 keV

- Fully-digital readout for time and energy
- Coupling to SiPM and readout

CeBr3

Time resolution FWHM (ps) per detector								
PMT	⁶⁰ Co	²² Na	Delay (ns)	HV (V)	Z (<u>mV</u>)			
XP20D0	145 ±2	210 ± 2	6.0	1200	-2.2			
R9779	119 ±2	164 ±2	1.5	1330	2.0			

Integrated system

DAQs

- 4 channels, 1024 samples per channel in a pulse
- 1 to 5 GS/s
- 12 bit
- USB power
- 500 pulses / s in the PC, full 4 channels, 12 bits at 5 GS/s

DRS4 @ PSI http://drs.web.psi.ch S. <u>Ritt</u>

VME-<u>based</u> data <u>acquisition</u> XIA digital data <u>acquistion system</u> + ...

- Continuous digitizing capabilities not really required
- Simple: the same board can acquire and digitize data for energy and time coincidences. Preserve pulse properties
- Flexibe. Any kind of processing and filter is possible, median filter, recursive filters, FFT and frequency based filters.
- Stable and noiseless

- Series 2000
- 1 GS (Maximum) Sampling speed
- 50 MHz bandwidth
- Vertical resolution 8 bits

Mass spectrometry with ISOLTRAP

Contact: M. Mougeout, K. Blaum, D. Lunney, L. Schweikhard

Penning-trap mass spectrometry at ISOLTRAP

High-precision Q_{EC}-values of mirror nuclei

- 30 spectra of ²¹Na, ²¹Ne and 18 of ²³Mg, ²³Na
- ${}^{21}Na \longrightarrow {}^{21}Ne$: ${}^{\delta m}/m = 9*10^{-10}$
- ${}^{23}Mg \longrightarrow {}^{23}Na: {}^{\delta m}/{}_{m} = 1.5*10^{-9}$
- Both Q_{EC} -values uncertainty improved by a factor of 5

J. Karthein *et al.*, Phys. Rev. C 100, 015502 (2019)

- V_{ud} element extracted from mirror nuclei:
 - Q_{EC}-values have the smallest contribution to the error budget

- Cannot extract V_{ud} for ²³Mg (missing $\beta \nu$ correlation coefficient)
- Mirror nuclei V_{ud} value agrees well with the one extracted from super allowed decays

High-precision Q_{EC}-values for neutrino physics

• Primary goal:

- Contribute to direct determination of neutrino mass
- Precise knowledge of the QEC-value of EC required by micro-calorimeters

$$Q_{EC} = (M_p - M_d)c^2$$

• But also:

- Test functioning of microcalorimeters
- Test theoretical description of EC-spectrum
- Search for new candidate EC-transitions

L. Gastaldo et al., Eur. Phys. J. Special Topics 226, 1623–1694 (2017)

• The ¹³¹Cs \rightarrow ¹³¹Xe candidate pair:

- Improve Q_{EC} uncertainty by a factor of 25
- Precludes 131 CS as possible candidate for the $v_{\text{e}}\text{-mass}$ determination
- Successful PI-ICR online test (1st ISOLTRAP publication on PI-ICR)

Mother	T _{1/2}	Daugh.	Q _{ge} / keV	δQ _{ge} / keV	Decay
¹³¹ Cs	9.7 d	¹³¹ Xe	-15	5	ECL
			-11	5	ЕСм
¹³¹ Cs	9.7 d	¹³¹ Xe	-11.5	0.2	ECL
			-7.2	0.2	ЕСм

Phase-Imaging Ion Cyclotron Resonance

MIRACLS: MR-TOF, Multi-Reflection-Time of Flight spectrometer

Contact: S. Malbrunot, CERN

MR-TOF devices

applications for high-flux MR-ToF

30-keV MR-ToF: new opportunities for purified ISOLDE beams

faster isobaric separation in MR-ToF while keeping high mass resolving power ☐ higher ion flux through MR-ToF device ('bypass' space-charge limits) ☐ initial goal: a few pA (ultimate goal: >100 pA)

erc European Research Council

the Multi Ion Reflection Apparatus for Collinear Laser Spectroscopy

ISS

ISS: direct reactions

Elab. (MeV)

З

Elab. (MeV)

Í V

Linear relationship between E_{cm} and $E_{lab.}$

New gas-filled recoil detector for recoil identification

Position-sensitive (delay lines) multi-wire proportional counter. Followed by segmented gas-filled ion chamber.

Digitized signals – sample full dE/dx.

Count rate up to 100kHz.

Completed detector of 3 modules

1 module with 2 sides 4xDSSSD wafers per side

DSSSD wafers

Ohmic (n) [glue bonded] back

Junction (p) [wire bonded] front

Completed module 3 → Array (CERN) 1 → Spare (CERN)

6 ASICs per module 3 forward end 3 rear end

ASIC 0, 2, 3, 5 - p-side strips

- 128 channels per ASIC.
- Strips "paired" by wire bonding from A side to B side

ASIC 1, 4 - n-side

- 44 channels per ASIC.
- Every strip mapped to a single channel.

0A	14	2A	3A	A
AS]	IC 1	AS	IC 4	
Ов	1в	2в	3в	B
 Row 0	Row 1	Row 2	Row 3	
ASIC 0	ASIC 2	ASIC 3	ASIC 5	

Module Assembly

Alpha spectra

Calibrated Ge detector

Contact: B. Blank, Bordeaux

Lifetime t1/2 and branching ratio BR

- Decay studies with high-purity Ge detector (Bordeaux)
 - Very well known efficiency

Contact: B. Blank, Bordeaux

full-energy

position (cm)

22

23

24

2000

B. Blank et al., NIM A 776, 34 (2015)

229Th nuclear clock

Contact: P. Van Duppen, KU Leuven

Nuclear clock based on 229mTh

Nucleus is more separated from environment:

- Expected to outperform present-day best clocks
- World-wide effort to created nuclear clock
- BUT : Nuclear properties not know with high enough precision!

Goal:

- Create ²²⁹Ac at ISOLDE, implant it in wide-bandgap CaF crystal at correct site (emission channeling measurement)
- Measure direct photon emission from 229m Th $\rightarrow ^{229}$ Th with high-resolution VUV photon spectrometer with $\Delta E < 0.1 \text{ nm}$
- prerequisite for direct laser excitation

 $\Delta E = 1 \text{ nm} = 0.05 \text{ eV}$

Mastituut voor Kern- en Stralingsfysica

II. Spectroscopy of the Radiative Decay: Methodology

- Implantation into thin (50nm) CaF₂ crystal on Si backing (characterization at KU Leuven)
- Implantation time: 2 half-lives
- Transfer of crystal under vacuum to spectrometer
- Crystal positioned close to entrance slit of VUV spectrometer (design based on Resonance Ltd customized VM180)
- Activity monitoring using a Ge detector
- Simulation of signal strength and worst-case background contributions (see next slide)

II. Spectroscopy of the Radiative Decay: Background

- Implantation of a 4 mm FWHM ion beam
- Scintillation properties in CaF₂ α,β: from literature ~1% conversion γ: 100% conversion
- PMT sensitivity window
- Conservative estimates of
 - photon coll.+ det. efficiency: > 0.01%
 - substitutional lattice position: 50%
 - isomer feeding: 14%

Signal (counts/sec.) and background contributions for 3hmeasurement at $10^6 pps$ implantation (2 h) and 2h isomer half-life:

WISARD

Contact: B. Blank, Bordeaux

32Ar at WISARD

Weak Interaction Studies with ³²AR Decay: e+-p coincidence in B field

WISARD

*** Aluminized Mylar (thickness = $6.7 \mu m$)

V. Araujo-Escalona et al. Phys. Rev. C101, 055501 (2020)

ISOLDE tape station

Detectors at ISOLDE tape-station

Beam instrumentation and low level control:

- Tape control and counter readout tested (on FESA level)
- Beam scanner to be installed by BE-BI
- Beta detectors:
 - 2 prototypes (3x3 SiPM array) tested at CERN, noise at tapestation position is absent, ready for production.
 Same design can be used for all the positions.
 - Updating drawings and producing new parts, collaboration with SY-STI-TCD.
- HPGe detector:
 - Preliminary tests at GSI show a fully recovered resolution, however noise from cooling system was identified and currently addressed.
- Data acquisition:
 - CAEN DT5725 purchased, all-in-one solution
- Top level Controls (GUI)
 - Basic version by BE-OP (Java)
 - Expert interface via STI-RBS (tbd)
- Future
 - Final tests to be performed by March with all detectors in place
 - Once TS1 ready launching TS2 installation

Contact: R. Lica, S. Rothe

IFIN-HH 3x3 SiPM array

Old Tapestation HPGe detector

PUMA

Contact: A. Obertelli

PUMA cyostat

PUMA traps and detectors

