Exploring and exploiting various regimes within the jet shower

Raghav Kunnawalkam Elayavalli (Yale) Feb 28th, 2022

Winter Workshop on Nuclear Dynamics Puerto Vallarta, Mexico

raghavke.me

Why look at this observable?

Simple picture of a hard scattering

- Large momentum transfer between constituent parton (quarks/gluons) of the two incoming nuclei
- What happens next to the scattered parsons?
- Lets start with the basics

QCD

evolution

 equations Gribov, Lipitov Sov. J. Nucl. Phys. 15 (1972) 438-450 Altarelli, Parisi, Nucl. Phvs. B126 (1977) 298-318Splitting probabilities
$d P \approx \frac{d \theta}{\theta} \frac{d \omega}{\omega}$

 $\tau_{f}^{v a c} \cong \frac{\omega}{k_{T}^{2}}=\frac{1}{\theta^{2} \omega}$

$0(0.00) \xrightarrow{(131.08,102.77,1942.15,21)}$
13.1 GeV

Gluon

$$
\tau_{f}^{v a c} \cong \frac{\omega}{k_{T}^{2}}=\frac{1}{\theta^{2} \omega}
$$

Gluon

Sjöstrand, Skands,
Eur. Phys. J. C39 (2005) 129-154

First emission in the parton shower

Simple picture of jets in pp

Hadronization

How can one connect the two regimes? parton shower to particles

What do we want to measure?

- We want to translate an intrinsic (and unmeasurable) parton shower to experimentally accessible observables)

This gluon resulted in 6 parton before the hadronization stage in the MC model

Sjöstrand, Skands,
Eur. Phys. J. C39 (2005) 129-154

How do we measure this?

How to experimentally measure the formation time τ_{f}

Take any two objects - in this case the first two surviving prongs after SoftDrop grooming

Dasgupta et al. Larkowski, et al. JHEP 09 (2013) 029 JHEP 05 (2014) 146

$$
\begin{gathered}
z=\frac{\min \left(\mathrm{p}_{\mathrm{T}, 1}, \mathrm{p}_{\mathrm{T}, 2}\right)}{p_{T, 1}+p_{T, 2}} \\
E=E_{1}+E_{2}
\end{gathered}
$$

$$
\theta=\Delta R(1,2)
$$

Apolinario et al.
Eur. Phys. J. C 81 (2021) 6, 561
Chen et. al. 2109.15318

Formation time vs jet mass

Identifying two regimes

- SoftDrop first split τ_{f}

Expectations:

- happen early in time with the expectation that first splits correspond to partonic splits
- Mostly perturbative in nature

- Leading and subleading ch-particle τ_{f}

Expectations:

- Occur later in time since its calculated using charged particles which occur at the end
- Mostly nonperturbative
- SoftDrop first split τ_{f}

Expectations:

- happen early in time with the expectation that first splits correspond to partonic splits
- Mostly perturbative in nature

- NLL calculations (who nonperturbative corrections) matches data at large jet R and high P_{T}

What do these distributions look like in PYTHIA?

- As expected we see a significant shift between the two distributions
- Charged particles generally have a formation time much larger than the first splits

Connecting the two regimes

- SoftDrop first split τ_{f}
- SoftDrop split (varying $z_{\text {cut }}$) resolving the two leading charged particles

- Leading and subleading ch-particle τ_{f}

Formation times across various regimes within the jet shower

- First measurements of formation time from the jet splitting trees and from charged particles in the jet
- Resolved SD splits show similar shape as the charged particle split at large τ_{f} values occurring in the predominantly non-perturbative region
- Comparison of the different splits highlights the transition from pQCD to $n p Q C D$

Studying the plateau

Charged Particle $\tau_{f} \mathrm{fm} / \mathrm{c}$

- Selection on the resolved formation time essentially sculpts the jet mass and opening angles
- Reproduce correlation between later times and smaller masses (virtuality) and narrower opening angles - Important handle on particle production and hadronization

Where do we go from here? - 1

Time resolved QGP tomography

- Searching for hard medium induced gluon emissions, medium coherence length etc...
- Scan across emission phasespace leads to first ever spacetime tomography of the QGP

Eur. Phys. J. C 81 (2021) 6, 561

Where do we go from here? - 2

Extending the charge-correlations in formation time

- Significant split in the formation times for 3rd particle to be opposite sign - quantitative categorizing of charge conservation in jets vs time
- Emerging as a new avenue that complementary to jet substructure focused on understanding hadronization mechanisms

$\tau_{f}[f m / c]$

Backup

- Recent studies also show its usefulness from the theoretical POV on isolating regions where calculations are valid
- Fuzzy area, but overall one can separate out 'mostly’ perturbative and 'mostly' non-perturbative regions based on τ

Comparison with MC

- Jet substructure program at STAR aims at mapping jet evolution at RHIC energies
- Data show a gradual variation in the available phase space
- leading to modifications (e.g. virtuality evolution) in the observed splitting kinematics
- Observe increased probability of significantly harder/symmetric splittings at the third/ narrow split compared to the first and second splits
- Subjets at RHIC allow to disentangle perturbative and non-perturbative dynamics of jet evolution - these third and narrow splits for our low p_{T} jets end up bein quite close to the Λ_{QCD} scale

