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Why look at this observable?
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SoftDrop
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• Large momentum transfer between 
constituent partons (quarks/gluons) of 
the two incoming nuclei 


• What happens next to the scattered 
partons? 


• Lets start with the basics 

Simple picture of a hard 
scattering 
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Hard 
scattering

Parton shower 

Hadronization

• Large momentum transfer between 
constituent partons (quarks/gluons) of 
the two incoming nuclei 


• What happens next to the scattered 
partons? 


• Lets start with the basics 



QCD 
evolution 
equations 
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Gluon jet g → g + g
g → g + g g → g + g

g → g + g

g → g + g

13.1 GeV

dP ≈
dθ
θ

dω
ω

Splitting probabilities 
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Two fundamental scales involved in 
jet evolution -  
opening angle and energy 
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Simple picture of jets in pp  
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Hard 
scattering

Parton shower 

Hadronization

How can one connect the two regimes? parton shower to particles

6
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• We want to translate an intrinsic (and unmeasurable) 
parton shower to experimentally accessible 
observable(s) 


• We start with the hadronized remnants of the parton 
shower 
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What do we want to measure? 

Parton Shower

This gluon resulted in 6 partons before the 
hadronization stage in the MC model 

Gluon

Sjöstrand, Skands,  
Eur. Phys. J. C39 (2005) 129-154
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pQCD npQCD

τf

Jet Clustering 

Parton Shower Hadronization 
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Take any two objects - in this case 
the first two surviving prongs after 
SoftDrop grooming  

How to experimentally measure 
the formation time τf
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τf =
1

z ⋅ (1 − z) ⋅ θ2 ⋅ E
[fm/c]

Apolinario et al.  
Eur. Phys. J. C 81 (2021) 6, 561

z =
min(pT,1, pT,2)

pT,1 + pT,2

θ = ΔR(1,2)

E = E1 + E2

Chien et. al. 2109.15318 

Larkowski, et al. 
JHEP 05 (2014) 146

Dasgupta et al.  
JHEP 09 (2013) 029

1

2
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https://link.springer.com/article/10.1140/epjc/s10052-021-09346-8
https://arxiv.org/pdf/2109.15318.pdf


Formation time vs jet mass 
11

Anti-kT  Jets 

 GeV/c

R = 0.4
20 < pT < 30

PYTHIA 6 STAR tune

Majumder and Putschke, PRC 2016



Identifying two regimes 
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• SoftDrop split 
(varying ) 
resolving the two 
leading charged 
particles 

zcut
• Leading and 

subleading 
ch-particle  τf

•SoftDrop  
first split τf

Expectations: 
• Occur later in time 

since its calculated 
using charged 
particles which 
occur at the end   

• Mostly non-
perturbative 
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• happen early in time 

with the expectation 
that first splits 
correspond to 
partonic splits  

• Mostly perturbative 
in nature  

12
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•SoftDrop  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STAR data
Sys. Uncert
Kang et al.

• NLL calculations 
(w/o non-
perturbative 
corrections) 
matches data at 
large jet R  
and high pT

Kang, Lee, Liu, Neill and Ringer, JHEP (2020)

STAR Phys. Lett. B 811, 135846 (2020)
STAR Phys. Rev. D 104, 052007 (2021)
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What do these distributions look like in PYTHIA? 

• As expected we see a significant shift between the two distributions

• Charged particles generally have a formation time much larger than 

the first splits 

Apolinario, RKE, Madureira,  
(in preparation)

13



Connecting the two regimes 
• Leading and 

subleading 
ch-particle  τf
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• SoftDrop first 
split  τf
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Formation times across various 
regimes within the jet shower 

RKE (for STAR) pdf  
Jets and 3D Imaging at the EIC Workshop 
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• First measurements of formation 
time from the jet splitting trees and 
from charged particles in the jet 


• Resolved SD splits show similar 
shape as the charged particle split 
at large  values occurring in the 
predominantly non-perturbative 
region 

• Comparison of the different splits 
highlights the transition from pQCD 
to npQCD 

τf

https://drive.google.com/file/d/1mPtBlT0-dyiRAmlVG9vuAViJt0BTdEHR/view


Studying the plateau 

• Selection on the resolved formation time essentially sculpts the jet 
mass and opening angles


• Reproduce correlation between later times and smaller masses 
(virtuality) and narrower opening angles - Important handle on 
particle production and hadronization   

17

Apolinario, RKE, Madureira,  
(in preparation)

Jet Mass 

ΔR

Charged Particle   fm/cτf
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Time resolved QGP tomography
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• Scan across emission phase-
space leads to first ever space-
time tomography of the QGP  

• Searching for hard medium 
induced gluon emissions, 
medium coherence length etc… Apolinario et al.  

Eur. Phys. J. C 81 (2021) 6, 561

https://link.springer.com/article/10.1140/epjc/s10052-021-09346-8


Extending the charge-correlations in formation time

• Significant split in the formation times for 3rd particle to be opposite 
sign - quantitative categorizing of charge conservation in jets vs time


• Emerging as a new avenue thats complementary to jet substructure 
focused on understanding hadronization mechanisms 

Apolinario, RKE, Madureira,  
(in preparation)
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Backup



• Recent studies also show its usefulness from the theoretical POV on 
isolating regions where calculations are valid


• Fuzzy area, but overall one can separate out ‘mostly’ perturbative and 
‘mostly’ non-perturbative regions based on τ



• PYTHIA 8, PYTHIA 6 and 
HERWIG 7 show similar 
behavior of crossover and 
flattening


• Hints of differences  
between PYTHIA 6/8  and 
HERWIG 7 in the 
crossover region (ratio 
goes from > 1 to < 1)


• Isolate two regions -  
Drop  
Plateau 
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Comparison with MC



• Jet substructure program at STAR aims at 
mapping jet evolution at RHIC energies 


• Data show a gradual variation in the 
available phase space 

• leading to modifications (e.g. virtuality 

evolution) in the observed splitting 
kinematics  


• Observe increased probability of significantly 
harder/symmetric splittings at the third/
narrow split compared to the first and 
second splits


• Subjets at RHIC allow to disentangle 
perturbative and non-perturbative 
dynamics of jet evolution - these third and 
narrow splits for our low  jets end up being 
quite close to the  scale  
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