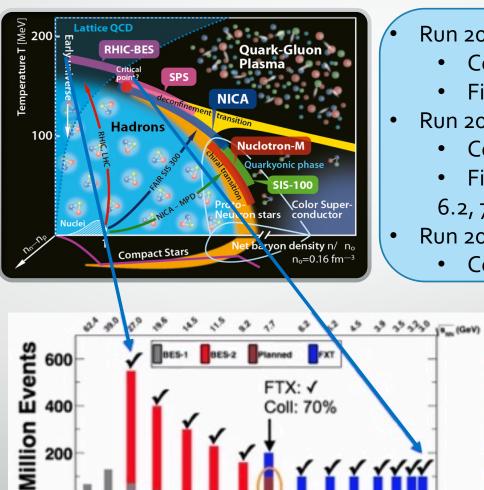
Equation of state from lattice QCD

Claudia Ratti

University of Houston

muses


Open Questions

FTX: √

Coll: 70%

- Is there a critical point in the QCD phase diagram?
 - What are the degrees of freedom in the vicinity of the phase transition?
- Where is the transition line at high density?
- What are the phases of QCD at high density?

Are we creating a thermal medium in experiments?

400

200

0.1

0.2

0.3

μ_ (GeV)

Run 2019:

- Collider: √s_{NN}=14.6, 19.6, 200 GeV •
- Fixed target: √s_{NN}=3.2 GeV

Run 2020:

- Collider: √s_{NN}=9.2, 11.5 GeV •
- Fixed target: √s_{NN}=3.5, 3.9, 4.5, 5.2, • 6.2, 7.2, 7.7 GeV
- Run 2021:
 - Collider: √s_{NN}=7.7 GeV •

Comparison of the facilities

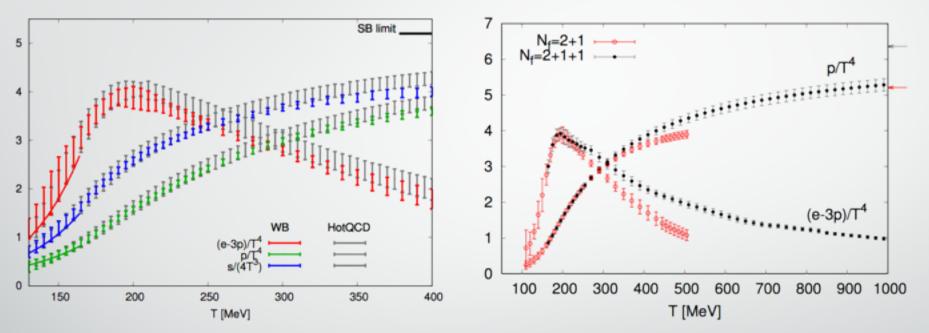
Compilation by D. Cebra

				Complia	LIOIT BY D. CCDId
Facilty	RHIC BESII	SPS	NICA	SIS-100	J-PARC HI
				SIS-300	
Exp.:	STAR	NA61	MPD	CBM	JHITS
	+FXT		+ BM@N		
Start:	2019-20	2009	2020	2022	2025
_	2018		2017		
Energy:	7.7–19.6	4.9-17.3	2.7 - 11	2.7-8.2	2.0-6.2
√s _{NN} (GeV)	2.5-7.7		2.0-3.5		
Rate:	100 HZ	100 HZ	<10 kHz	<10 MHZ	100 MHZ
At 8 GeV	2000 Hz				
Physics:	CP&OD	CP&OD	OD&DHM	OD&DHM	OD&DHM
	Collider	Fixed target	Collider	Fixed target	Fixed target
	Fixed target	Lighter ion collisions	Fixed target		
			. .		

CP=Critical Point OD= Onset of Deconfinement DHM=Dense Hadronic Matter

How can lattice QCD support the experiments?

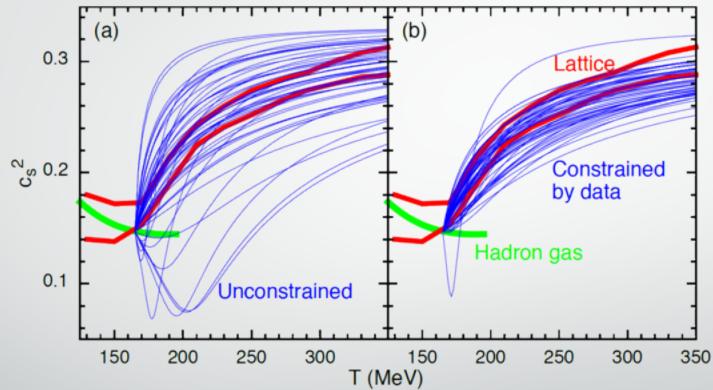
- Equation of state
 - Needed for hydrodynamic description of the QGP
- QCD phase diagram
 - Transition line at finite density
 - Constraints on the location of the critical point
- Fluctuations of conserved charges
 - Can be simulated on the lattice and measured in experiments
 - Can give information on the evolution of heavy-ion collisions
 - Can give information on the critical point


OCD Equation of state at finite density from the lattice

Claudia Ratti

QCD EoS at $\mu_B = 0$

WB: PLB (2014); HotQCD: PRD (2014)



- EoS for N_f=2+1 known in the continuum limit since 2013
- Good agreement with the HRG model at low temperature
- Charm quark relevant degree of freedom already at T~250 MeV

Constraints on the EoS from the experiments

S. Pratt et al., PRL (2015)

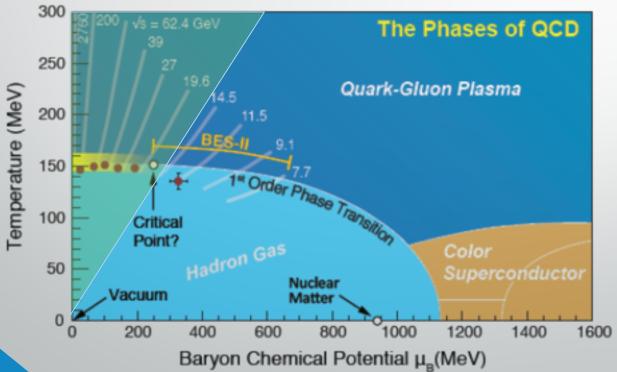
- Comparison of data from RHIC and LHC to theoretical models through Bayesian analysis
- The posterior distribution of EoS is consistent with the lattice QCD one

Taylor expansion of EoS

• Taylor expansion of the pressure:

$$\frac{p(T,\mu_B)}{T^4} = \frac{p(T,0)}{T^4} + \sum_{n=1}^{\infty} \left. \frac{1}{(2n)!} \frac{\mathrm{d}^{2n}(p/T^4)}{d(\frac{\mu_B}{T})^{2n}} \right|_{\mu_B=0} \left(\frac{\mu_B}{T} \right)^{2n} = \sum_{n=0}^{\infty} c_{2n}(T) \left(\frac{\mu_B}{T} \right)^{2n}$$

- Two ways of extracting the Taylor expansion coefficients:
 - Direct simulation
 - Simulations at imaginary μ_B
- Two physics choices:
 - μ_B≠o, μ_S=μ_Q=o
 - μ_{s} and μ_{Q} are functions of T and μ_{B} to match the experimental constraints:

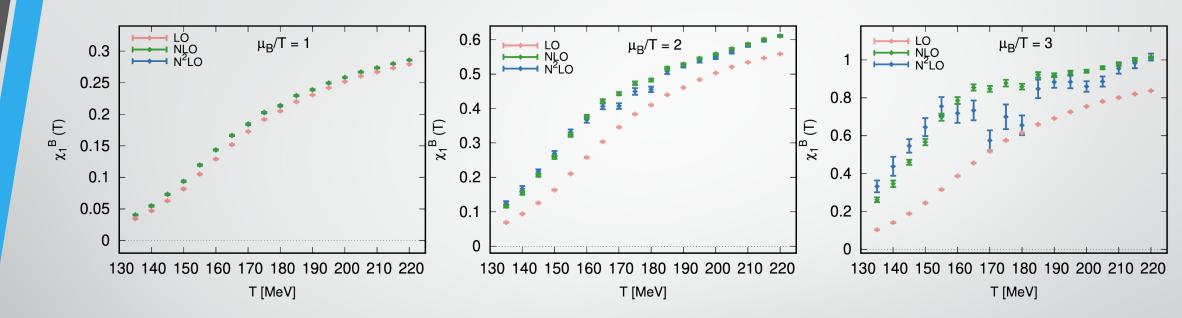

 $< n_Q >= 0.4 < n_B >$

Range of validity of equation of state

We now have the equation of state for µ_B/T≤2 or in terms of the RHIC energy scan:

 $\sqrt{s} = 200, \ 62.4, \ 39, \ 27, \ 19.6, \ 14.5 \text{GeV}$

Other expansion schemes have been proposed recently S. Mukherjee et al., 2021

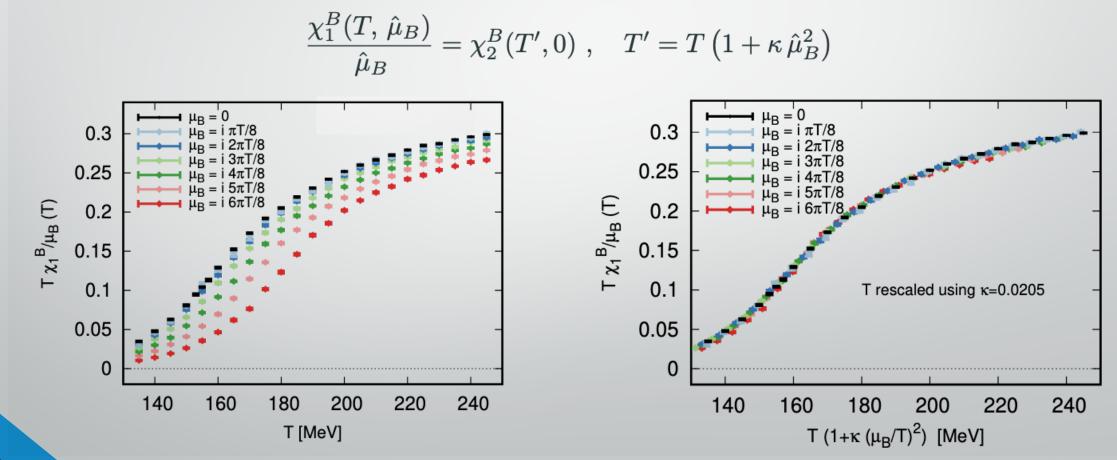

Introducing a novel expansion scheme

S. Borsanyi, C. R. et al., PRL (2021)

Claudia Ratti

10/26

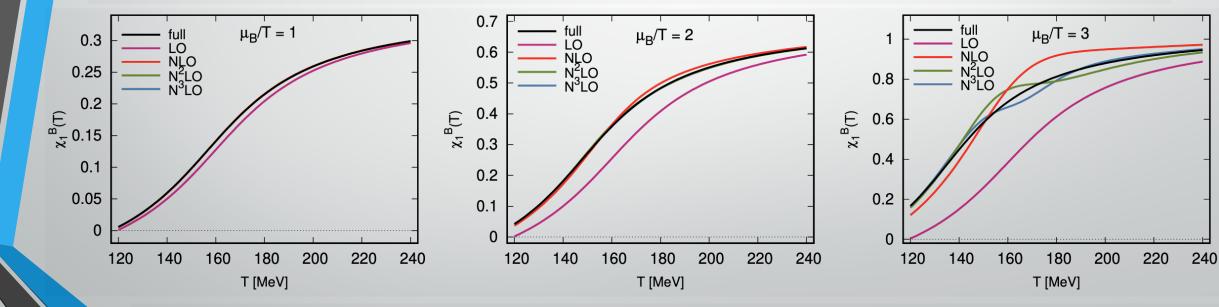
Motivation


 \Box Poor convergence of Taylor series: need to sum many terms to reach high μ_B

 \Box Oscillatory/non-monotonic behavior in some observables at high μ_B

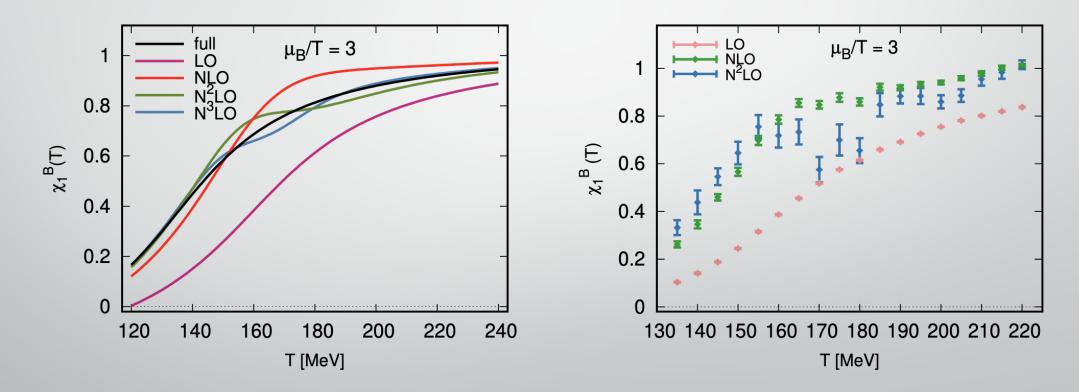
> Unphysical, due to truncation of Taylor series

An alternative approach


From simulations at imaginary μ_B we observe that $\chi_1^B(T, \hat{\mu}_B)$ at (imaginary) $\hat{\mu}_B$ appears to be differing from $\chi_2^B(T, 0)$ mostly by a rescaling of T:

Taylor expanding a (shifting) sigmoid

Assume we have a sigmoid function f(T) which shifts with $\hat{\mu}$, with a simple T-independent shifting parameter κ . How does Taylor cope with it?


$$f(T, \hat{\mu}) = f(T', 0) , \qquad T' = T(1 + \kappa \hat{\mu}^2) ,$$

We fitted $f(T,0) = a + b \arctan(c(T-d))$ to $\chi_2^B(T,0)$ data for a 48×12 lattice

Taylor expanding a (shifting) sigmoid

- The Taylor expansion seems to have problems reproducing the original function (left)
- Quite suggestive comparison with actual Taylor-expanded lattice data (right)

• Problems at T slightly larger than $T_{pc} \Rightarrow$ influence from structure in χ_6^B and χ_8^B

Formulation

- We have observed the $\hat{\mu}_B$ -dependence seems to amount to a simple T- rescaling
- A simplistic scenario with a single T- independent parameter κ does not provide a systematic treatment which can serve as an alternative expansion scheme
- We allow for more than $\mathcal{O}(\hat{\mu}^2)$ expansion of T' and let the coefficients be T-dependent:

$$\frac{\chi_1^B(T,\,\hat{\mu}_B)}{\hat{\mu}_B} = \chi_2^B(T',0) \ , \quad T' = T\left(1 + \kappa_2(T)\,\hat{\mu}_B^2 + \kappa_4(T)\,\hat{\mu}_B^4 + \mathcal{O}(\,\hat{\mu}_B^6)\right)$$

• **Important:** we are simply re-organizing the Taylor expansion via an expansion in the shift

$$\Delta T = T - T' = \left(\kappa_2(T)\,\hat{\mu}_B^2 + \kappa_4(T)\,\hat{\mu}_B^4 + \mathcal{O}(\,\hat{\mu}_B^6)\right)$$

• Comparing the (Taylor) expansion in $\hat{\mu}_B$ and our expansion in ΔT order by order, we can relate $\chi_n^B(T)$ and $\kappa_n(T)$

Formulation

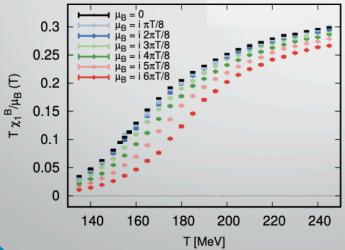
• Equating same-order terms, we find

$$\chi_4^B(T) = 6T\kappa_2^{BB}(T)\frac{d\chi_2}{dT} ,$$

$$\chi_6^B(T) = 60T^2(\kappa_2^{BB})^2(T)\frac{d^2\chi_2}{dT^2} + 120T\kappa_4^{BB}(T)\frac{d\chi_2}{dT}$$

or, analogously:

$$\kappa_{2}^{BB}(T) = \frac{1}{6T} \frac{\chi_{4}^{B}(T)}{\chi_{2}^{B'}(T)} ,$$


$$\kappa_{4}^{BB}(T) = \frac{1}{360\chi_{2}^{B'}(T)^{3}} \left(3\chi_{2}^{B'}(T)^{2}\chi_{6}^{B}(T) - 5\chi_{2}^{B''}(T)\chi_{4}^{B}(T)^{2}\right) .$$

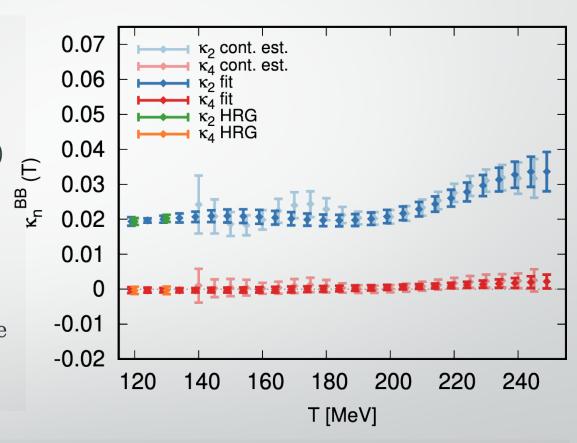
Analysis

I. Directly determine $\kappa_2(T)$ at $\hat{\mu}_B = 0$ from the previous relation

II. From our imaginary- $\hat{\mu}_B$ simulations ($\hat{\mu}_Q = \hat{\mu}_S = 0$) we calculate:

$$\frac{T' - T}{T \,\hat{\mu}_B^2} = \kappa_2(T) + \kappa_4(T) \,\hat{\mu}_B^2 + \mathcal{O}(\,\hat{\mu}_B^4) = \Pi(T)$$

III. Calculate $\Pi(T, N_{\tau}, \hat{\mu}_B^2)$ for $\hat{\mu}_B = in\pi/8$ and $N_{\tau} = 10, 12, 16$


IV. Perform a combined fit of the $\hat{\mu}_B^2$ and $1/N_{\tau}^2$ dependence of $\Pi(T)$ at each temperature, yielding a continuum estimate for the coefficients

 \Rightarrow The $\mathcal{O}(1)$ and $\mathcal{O}(\hat{\mu}_B^2)$ coefficients of the fit are $\kappa_2(T)$ and $\kappa_4(T)$

Results for the coefficients

Our initial guess was not far-off:

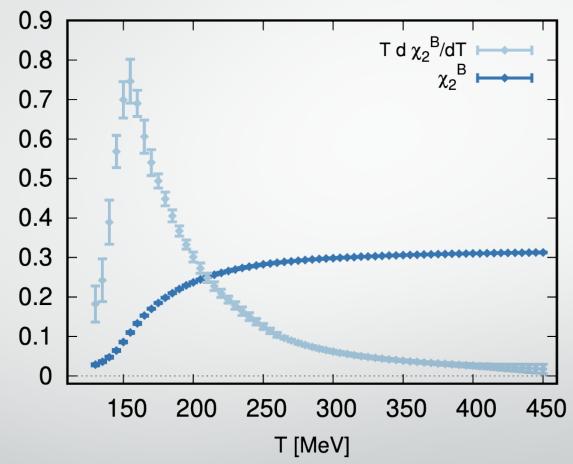
- Fairly constant $\kappa_2(T)$ over a large *T*-range
- Clear separation in magnitude between $\kappa_2(T)$ and $\kappa_4(T)$ hints at better convergence
- Agreement with the HRG model results at low temperatures
- Polynomial fits of $\kappa_2(T)$ and $\kappa_4(T)$ before use in thermodynamics (good fit qualities)

NOTE: polynomial fits take into account both statistical and systematic correlations.

Constructing the density at finite μ_{B}

We use the following expression:

$$rac{\chi_1^B(T,\hat{\mu}_B)}{\hat{\mu}_B} = \chi_2^B(T',0) \;, \quad ext{with}$$


 $T'(T,\hat{\mu}_B) = T\left(1 + \kappa_2^{BB}(T)\hat{\mu}_B^2 + \kappa_4^{BB}(T)\hat{\mu}_B^4 + \mathcal{O}(\hat{\mu}_B^6)\right)$

We need a continuum result for $\chi^B_2(\hat{T,0})$

For some observables such as the entropy, we also need the derivative of $\chi^B_2(\hat{T,0})$ with respect to the temperature

Constructing the density at finite μ_B

With this result and the set of κ_{ij} coefficients, we can now calculate all thermodynamic quantities

. 또한

Thermodynamics at finite μ_B

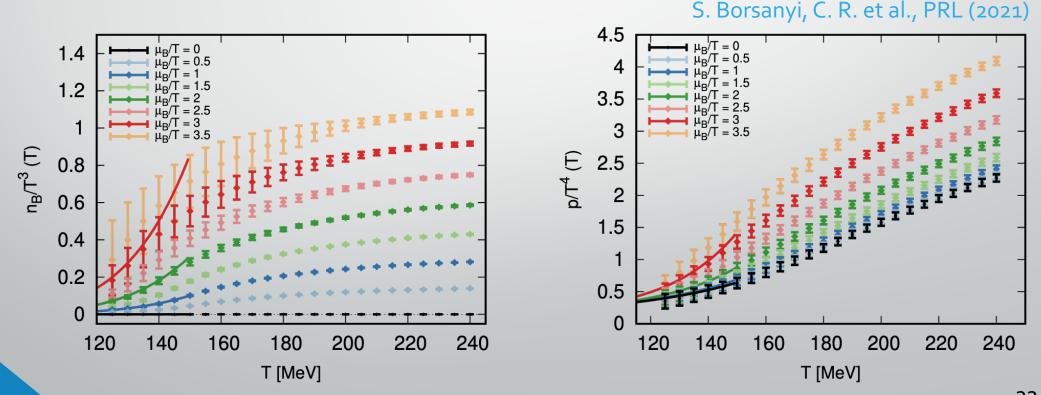
Thermodynamic quantities at finite (real) μ_B can be reconstruced from the same ansazt:

$$\frac{n_B(T,\,\hat{\mu}_B)}{T^3} = \hat{\mu}_B \chi_2^B(T',0)$$

with $T' = T(1 + \kappa_2^{BB}(T) \hat{\mu}_B^2 + \kappa_4^{BB}(T) \hat{\mu}_B^4).$

From the baryon density n_B one finds the pressure:

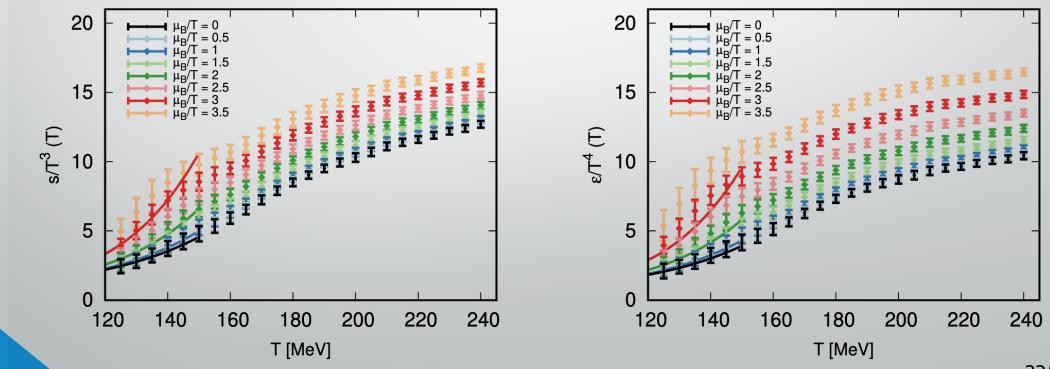
$$\frac{p(T,\,\hat{\mu}_B)}{T^4} = \frac{p(T,0)}{T^4} + \int_0^{\hat{\mu}_B} \mathrm{d}\hat{\mu}_B' \frac{n_B(T,\,\hat{\mu}_B')}{T^3}$$


then the entropy, energy density:

$$\frac{s(T, \hat{\mu}_B)}{T^4} = 4 \frac{p(T, \hat{\mu}_B)}{T^4} + T \left. \frac{\partial p(T, \hat{\mu}_B)}{\partial T} \right|_{\hat{\mu}_B} - \hat{\mu}_B \frac{n_B(T, \hat{\mu}_B)}{T^3}$$
$$\frac{\epsilon(T, \hat{\mu}_B)}{T^4} = \frac{s(T, \hat{\mu}_B)}{T^3} - \frac{p(T, \hat{\mu}_B)}{T^4} + \hat{\mu}_B \frac{n_B(T, \hat{\mu}_B)}{T^3}$$

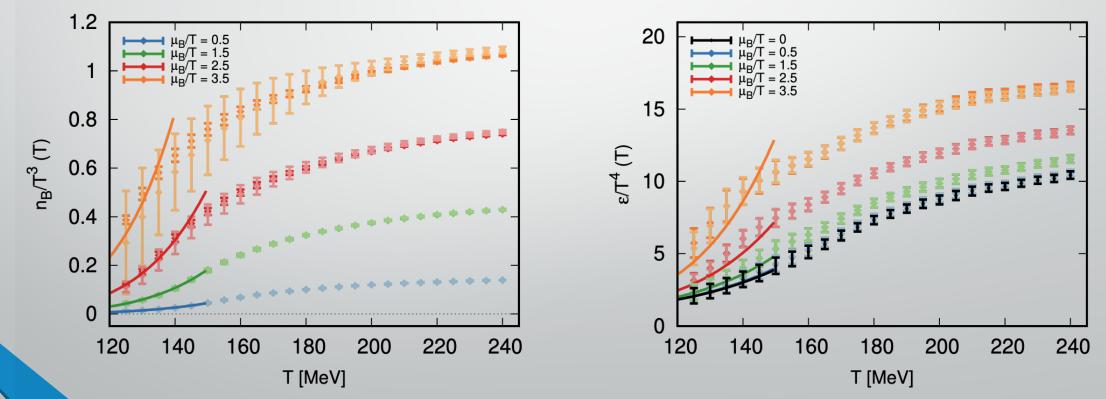
Claudia Ratti

Thermodynamics at finite μ_B : results

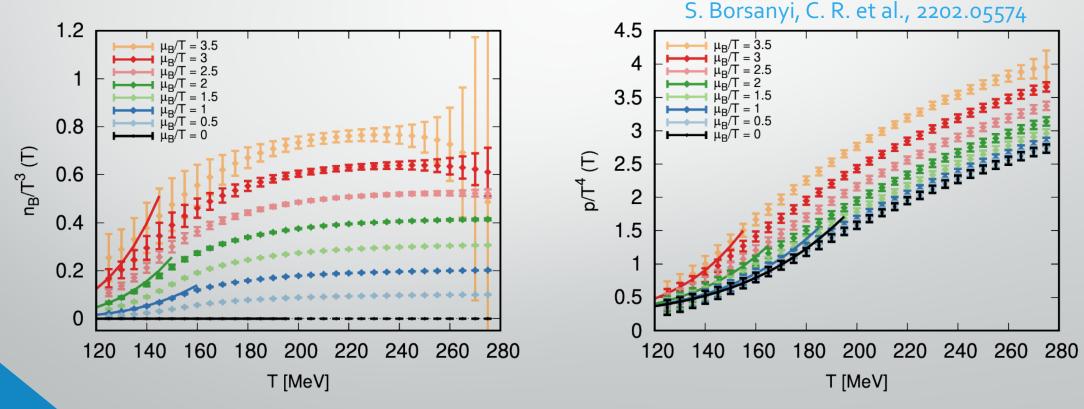

- We reconstruct thermodynamic quantities up to $\hat{\mu}_B \simeq 3.5$ with uncertainties well under control
- Agreement with HRG model calculations at small temperatures
- No pathological (non-monotonic) behavior is present

Thermodynamics at finite μ_B : results

- We reconstruct thermodynamic quantities up to $\hat{\mu}_B \simeq 3.5$ with uncertainties well under control
- Agreement with HRG model calculations at small temperatures
- No pathological (non-monotonic) behavior is present



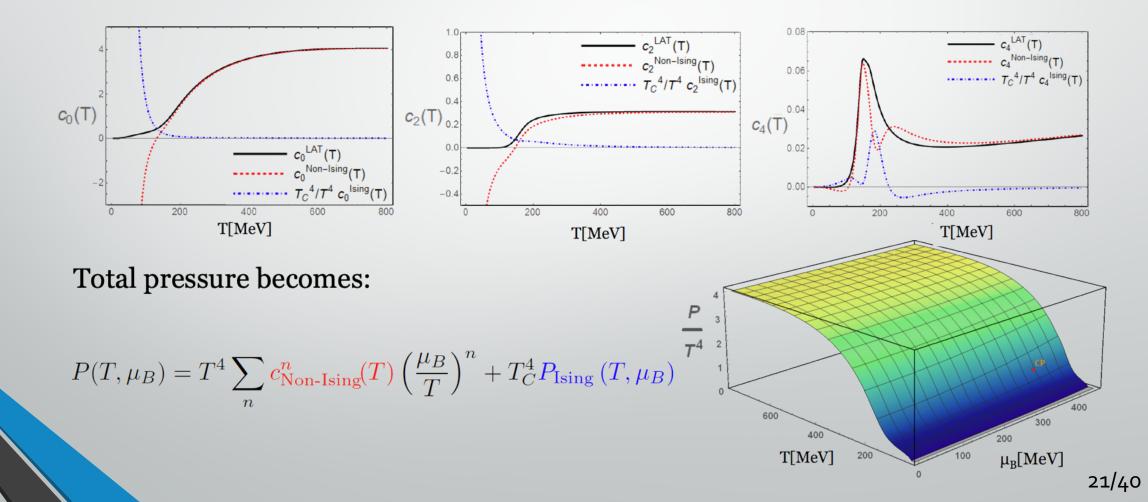
Convergence check


- We also check the results without the inclusion of $\kappa_4(T)$ (darker shades)
- Including $\kappa_4(T)$ only results in added error, but does not "move" the results

 \longrightarrow Good convergence

New result: strangeness-neutral EoS and beyond

- We recently extended these results to the case of strangeness-neutrality
- We expand along the strangeness-neutral line in the 4D phase diagram
- We also consider fluctuations of strangeness around the $<n_s>=0$ condition


Conclusions

- The EoS for QCD at large chemical potential is highly demanded in heavy-ion collisions community, especially for hydrodynamic simulations
- Historical approach of Taylor expansion for EoS has shortcomings
 - Because of technical/numerical challenges
 - Because of phase structure of the theory
- An alternative expansion scheme tailored to the specific behavior of relevant observables seems a better approach (better convergence)
- Thermodynamic quantities up to $\hat{\mu}_B \simeq 3.5$ have very reasonable uncertainties
- Just like Taylor, systematically improvable

Expansion coefficients

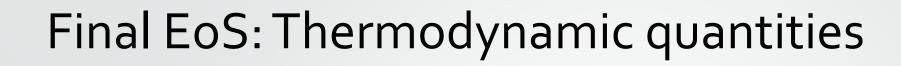
Extract the "regular" contribution as the difference between the lattice and Ising ones

 $T^4 c_n^{\text{LAT}}(T) = T^4 c_n^{\text{Non-Ising}}(T) + T_C^4 c_n^{\text{Ising}}(T)$

Merging with the HRG model at low T

 \Rightarrow Smooth merging with Hadron Resonance Gas (HRG) model through:

$$\frac{P_{\text{Final}}(T,\mu_B)}{T^4} = \frac{P(T,\mu_B)}{T^4} \frac{1}{2} \left[1 + \tanh\left(\frac{T-T'(\mu_B)}{\Delta T}\right) \right] + \frac{P_{\text{HRG}}(T,\mu_B)}{T^4} \frac{1}{2} \left[1 - \tanh\left(\frac{T-T'(\mu_B)}{\Delta T}\right) \right]$$
where:


► $T'(\mu_B)$ is the "transition" temperature, depending on μ_B :

$$T'(\mu_B) = T_0 + \frac{\kappa}{T_0}\mu_B^2 - T^*$$

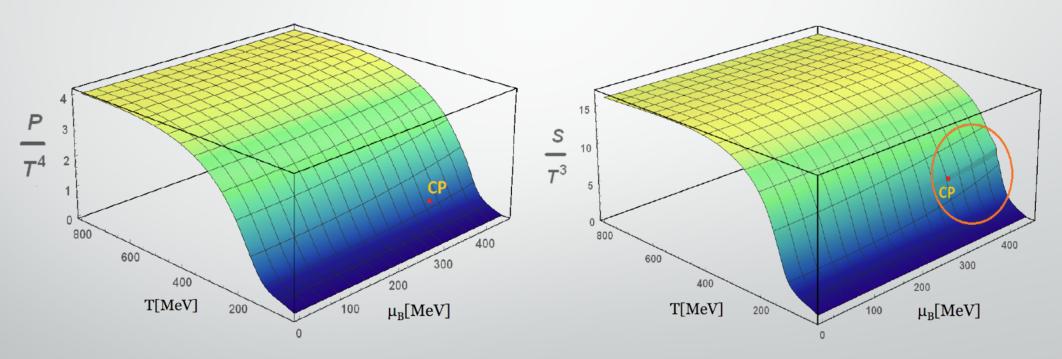
• ΔT is a measure of the overlap region size

 \Rightarrow In the following: $T^* = 23 \,\mathrm{MeV}$, $\Delta T = 17 \,\mathrm{MeV}$

Claudia Ratti

Once the pressure is determined, all thermodynamic quantities can be calculated:

$$\begin{array}{ll} \textbf{Entropy density}: & \frac{S}{T^3} = \frac{1}{T^3} \frac{\partial P}{\partial T} \\ \textbf{Baryon density}: & \frac{n_B}{T^3} = \frac{1}{T^3} \frac{\partial P}{\partial \mu_B} \\ \textbf{Energy density}: & \frac{\epsilon}{T^4} = \frac{S}{T^3} - \frac{P}{T^4} + \frac{\mu_B}{T} \frac{n_B}{T^3} \\ \textbf{Speed of sound}: & c_s^2 = \left(\frac{\partial P}{\partial \epsilon}\right)_{s/n_B} = \frac{n_B^2 \partial_T^2 P - 2S n_B \partial_T \partial_{\mu_B} P + S^2 \partial_{\mu_B}^2 P}{(\epsilon + P) \left(\partial_T^2 P \partial_{\mu_B}^2 P - (\partial_T \partial_{\mu_B} P)^2\right)} \\ \textbf{Baryon susceptibilities}: & \chi_n^B = \frac{\partial (P/T^4)}{\partial (\mu_B/T)} \quad \text{(only the second one in the paper)} \end{array}$$


Final EoS: Pressure and Entropy Density

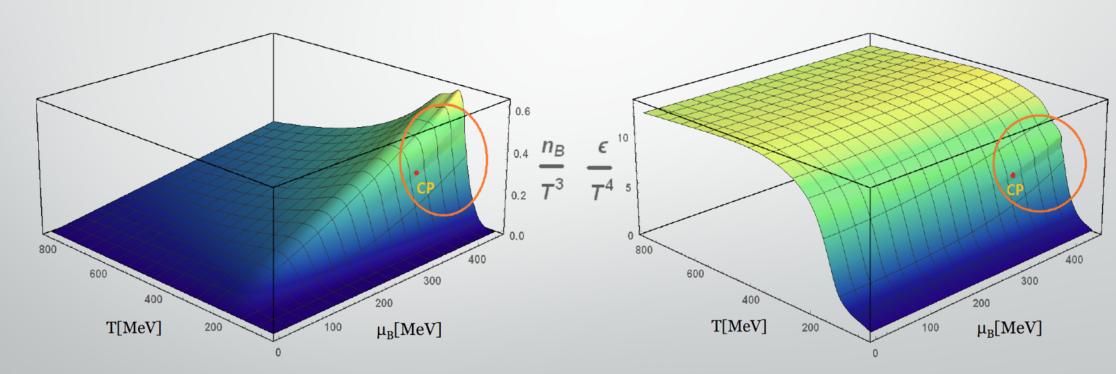
P. Parotto et al.,: PRC (2020)

The final EoS covers the range:

 $T = 30 - 800 \,\mathrm{MeV}$

 $\mu_B = 0 - 450 \,\mathrm{MeV}$

Although the effect is barely visible in the pressure, the entropy density shows a discontinuity in the first order transition region.


Final EoS: Baryon and Energy Density

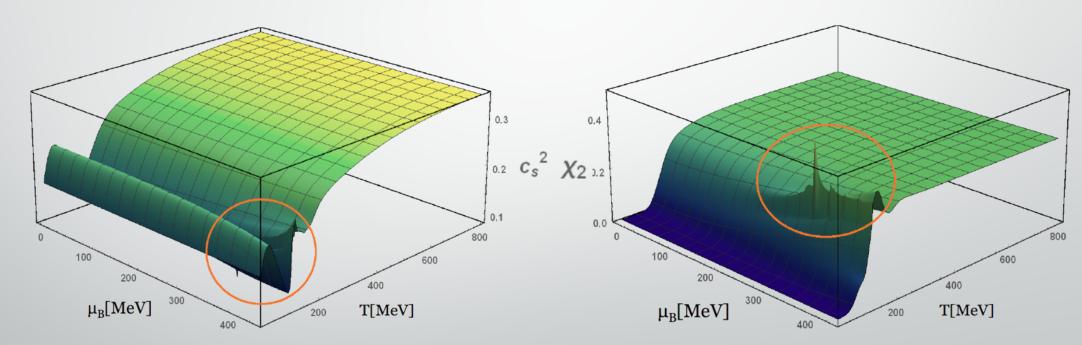
P. Parotto et al.,: PRC (2020)

The final EoS covers the range:

 $T = 30 - 800 \,\mathrm{MeV}$

 $\mu_B = 0 - 450 \,\mathrm{MeV}$

Baryon and energy density also show a discontinuity in the first order transition region.


Final EoS: Speed of sound and baryon number χ_2

P. Parotto et al.,: PRC (2020)

The final EoS covers the range:

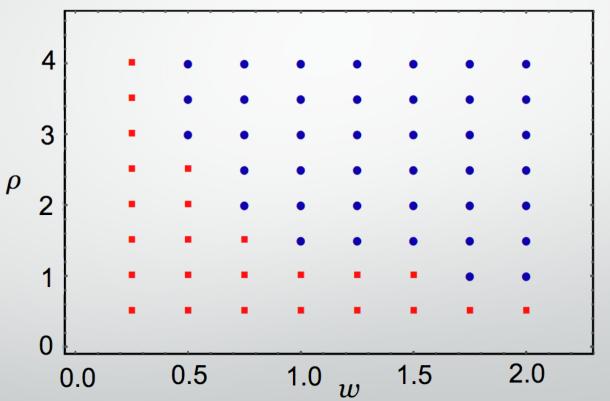
 $T = 30 - 800 \,\mathrm{MeV}$

 $\mu_B = 0 - 450 \,\mathrm{MeV}$



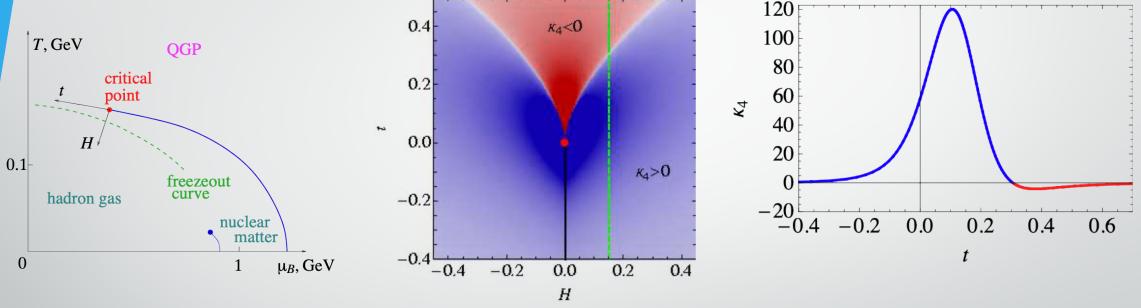
The speed of sound and the second baryon number cumulant show a (weak) dip and a (strong) peak at the critical point respectively.

Final EoS: isentropic trajectories


P. Parotto et al.,: PRC (2020)

- Relevant for hydrodynamic evolution are the lines of $s/n_B = \text{const}$:
 - ▶ Low- μ_B : match behavior from Lattice QCD
 - ▶ Close to the CP: some structure appears

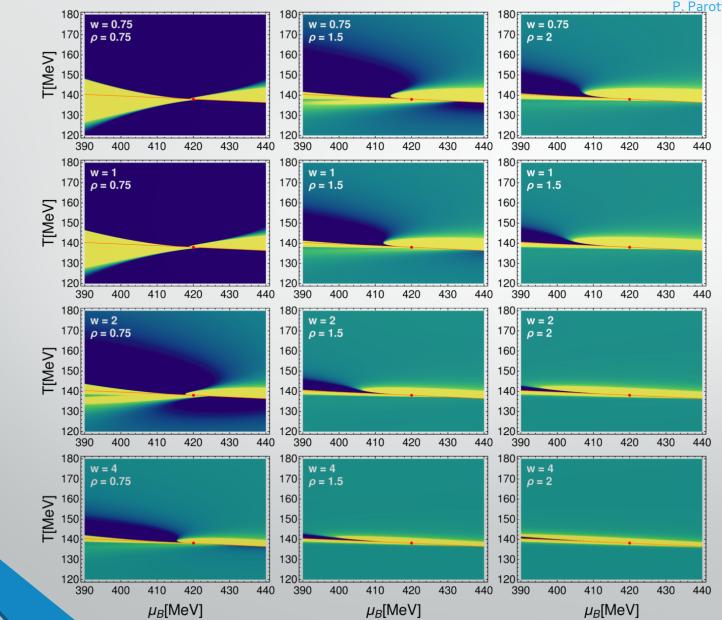
Final EoS: explore parameter space


Keeping the position of the critical point fixed, as well as the orientation of the axes mapped from the 3D Ising model phase diagram, we varied the parameters w, ρ , and required thermodynamic stability $(P, S, n_B, \epsilon, c_s^2 > 0)$ and causality $(c_s^2 \le 1)$

In blue (dots) the values corresponding to acceptable choices, in red (squares) the values leading to pathological EoS's

Behavior of the kurtosis

Motivation: predicted behavior of the kurtosis in the vicinity of the critical point:

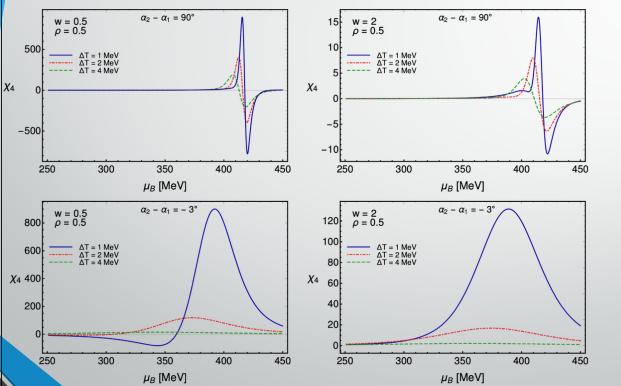

• This behavior was found considering the leading contribution to the kurtosis:

$$\kappa(t,h) = \left(\frac{\partial^3 M}{\partial h^3}\right)_t$$

Claudia Ratti

Behavior of the kurtosis

P. Parotto, C. R. et al., PRC (2020)


- We can now evaluate all contributions and see whether expected behavior still holds
- The blue area corresponds to negative values
- The blue area is pushed above the transition line
- The dip is difficult to detect at the freezeout

30/40

Implications for the experimental measurement

* Two sets of parameters

	μ_{BC}	T_C	$lpha_1$	$lpha_2-lpha_1$	w	ρ
I.	$420\mathrm{MeV}$	$138{ m MeV}$	4.6°	90°	0.5, 1, 2	0.5,1,2
II.	$420\mathrm{MeV}$	$138{ m MeV}$	4.6°	-3°	0.5, 1, 2	0.5,1,2

P. Parotto, C. R. et al., PRC (2020)

- 2 Common choice in literature. Orthogonal axes.
 2 Motivated by M.S. Pradeep, M. Stephanov, Phys. Rev. D 100 (2019)
- * **Assume** net-proton kurtosis follows critical behavior of $\chi_{4^{B}}$.
- * Take exemplary freeze-out lines parallel to chiral transition:

$$T_F(\mu_B) = T_0 + \kappa_2 T_0 \left(\frac{\mu_B}{T_0}\right)^2 - \Delta T$$

 Dip only appears for one choice, close to the vicinity of the transition line.

Collaborators: Jamie Karthein, Angel Nava Acuna, Damien Price (UH), Paolo Parotto (University of Wuppertal), Debora Mroczek, Jaki Noronha-Hostler (UIUC)

New version of the code can be downloaded at: https://bitbucket.org/bestcollaboration/eos_with_critical_point/src/master/

Claudia Ratti

32/40

New version

- ► New version includes (but not limited to):
 - Imposing conditions on conserved charges as present in HICs
 - Hadronic species present in SMASH hadronic transport approach

$$\langle n_S \rangle = 0$$
 $\langle n_Q \rangle = 0.4 \langle n_B \rangle$

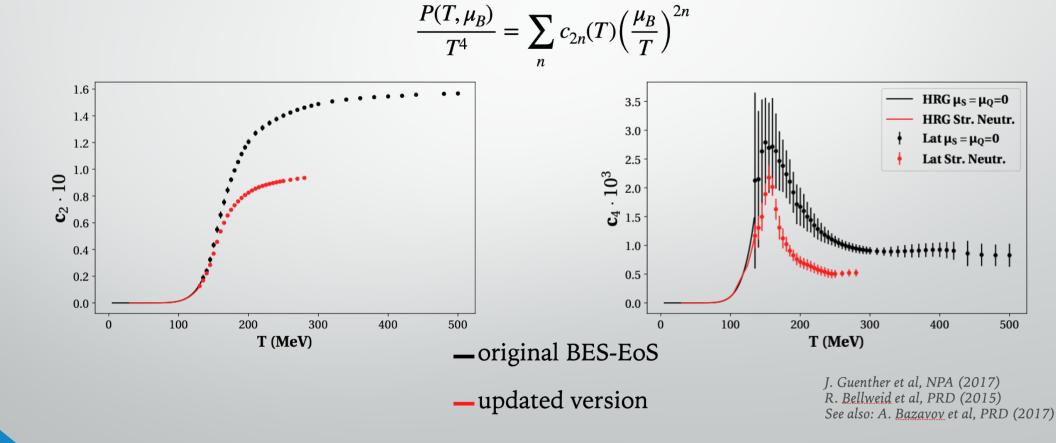
Degrees of Freedom

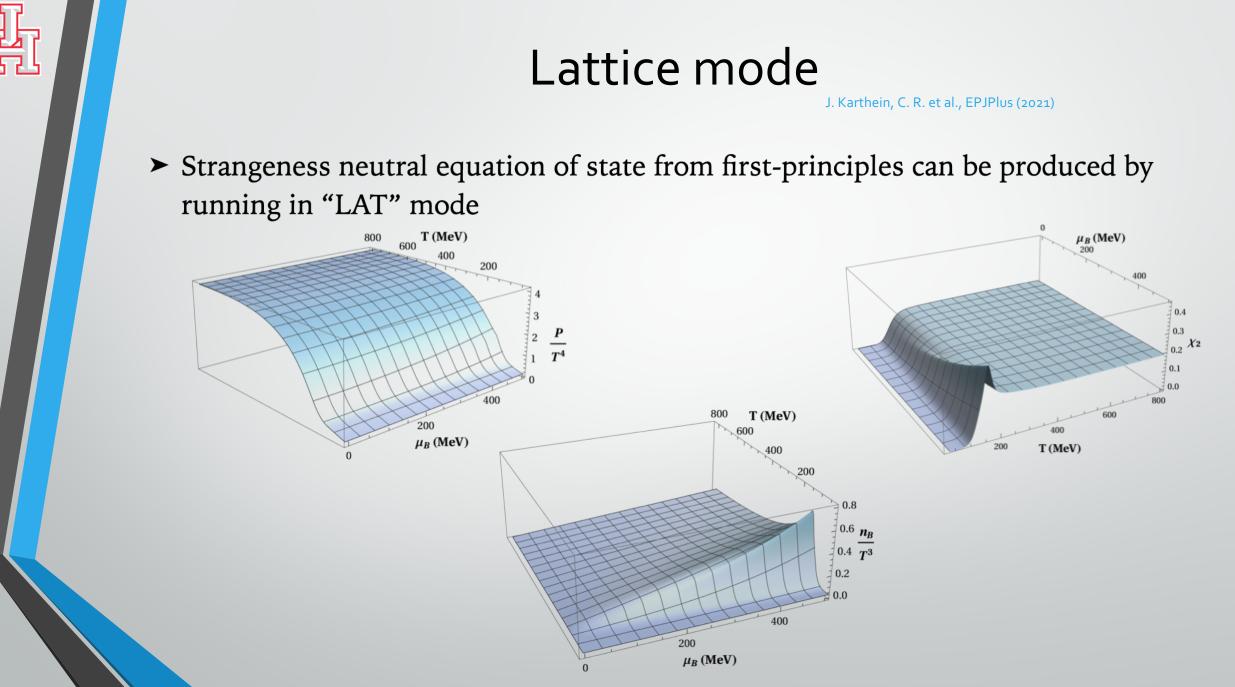
N	Δ	۸	Σ	Ξ	Ω		Un	flavored		Strange	
N ₉₃₈	Δ ₁₂₃₂	Λ1116	Σ1189	Ξ1321	Ω ⁻ 1672	π ₁₃₈	f _{0 980}	f _{2 1275}	π _{2 1670}	K494	1
N1440	Δ1620	Λ1405	Σ1385	Ξ1530	Ω ⁻ 2250	π ₁₃₀₀	f _{0 1370}	f2'1525		K*892	
N1520	Δ1700	A1520	Σ1660	Ξ1690		π ₁₈₀₀	f _{0 1500}	f _{2 1950}	P3 1690	K1 1270	
N ₁₅₃₅	Δ1900	Λ ₁₆₀₀	Σ1670	Ξ1820			f _{0 1710}	f _{2 2010}		K1 1400	
N ₁₆₅₀	Δ1905	Λ1670	Σ1750	Ξ1950		η ₅₄₈		f _{2 2300}	Фз 1850	K*1410	
N ₁₆₇₅	Δ1910	Λ ₁₆₉₀	Σ1775	Ξ2030		η '958	ao 980	f _{2 2340}		K0*1430	
N ₁₆₈₀	Δ1920	Λ ₁₈₀₀	Σ1915			 ¶1295	ao 1450		a 4 2040	K2*1430	
N ₁₇₀₀	Δ1930	Λ ₁₈₁₀	Σ1940			ŋ 1405		f _{1 1285}		K*1680	
N ₁₇₁₀	Δ1950	Λ ₁₈₂₀	Σ2030			J 1475	Φ1019	f _{1 1420}	f _{4 2050}	K _{2 1770}	
N ₁₇₂₀		Λ ₁₈₃₀	Σ2250				φ1680			K3*1780	
N ₁₈₇₅		Λ ₁₈₉₀				0800	11100	a2 1320		K _{2 1820}	
N ₁₉₀₀		A2100					h _{1 1170}			K4*2045	
N ₁₉₉₀		A2110				P 776		π _{1 1400}			
N ₂₀₆₀		A2350				P1450	b _{1 1235}	π1 1600			correspondin
N ₂₀₈₀		1 12.330				ρ1430	011235	741 1000			ntiparticles
N ₂₁₀₀						P1/00	a1 1260	J 2 1645			erturbative
N2120						ω ₇₈₃	■1 1260	12 1045			eatment of hotons and
N ₂₁₉₀								tala come			ileptons
N ₂₂₂₀						ω ₁₄₂₀		ω3 1670		▶ Is	ospin symme
N ₂₂₅₀				A	s of SMASH-1.7	ω ₁₆₅₀					1

Mesons and baryons according to particle data group

• Isospin multiplets and anti-particles are included

H. <u>Elfner</u>, RHIC-BES Seminar (2020) J. Weil et al, PRC (2016)

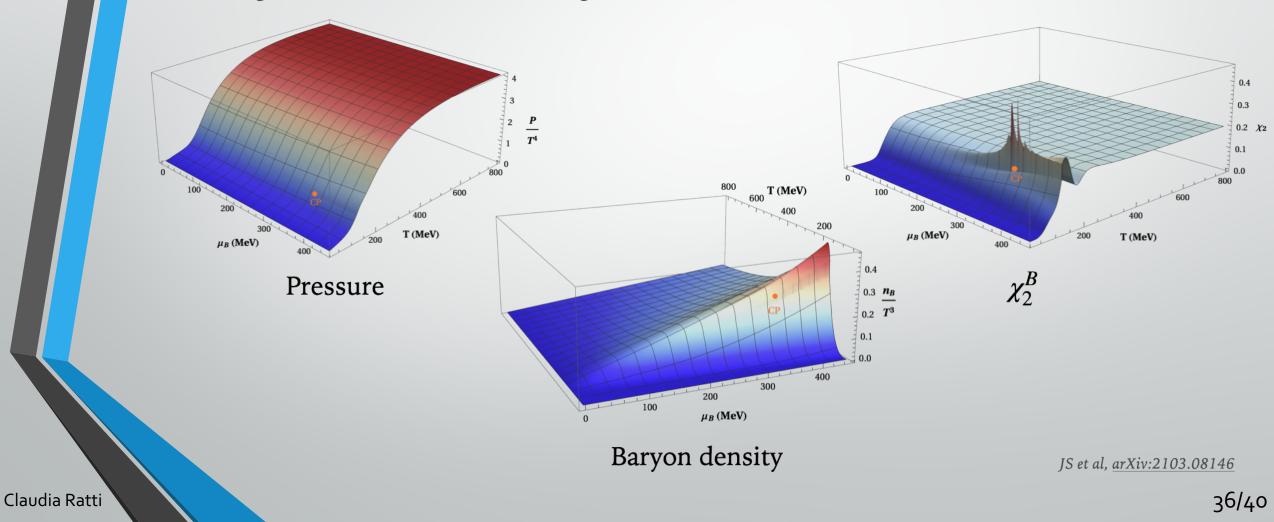




Taylor coefficients from lattice QCD

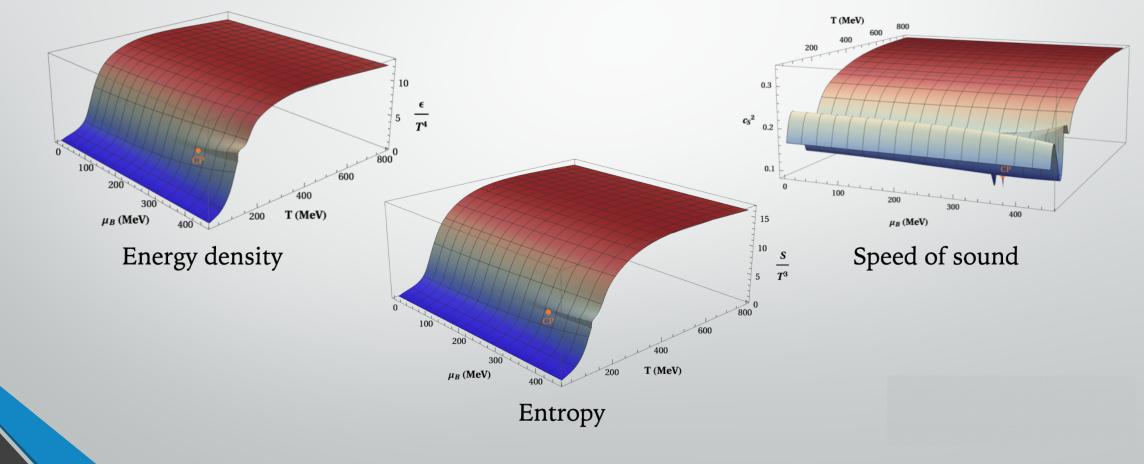
J. Karthein, C. R. et al., EPJPlus (2021)

➤ Lattice results for Taylor expansion of pressure around µ_B = 0 up to 𝒪(µ⁴_B) are the backbone of the procedure for creating this equation of state



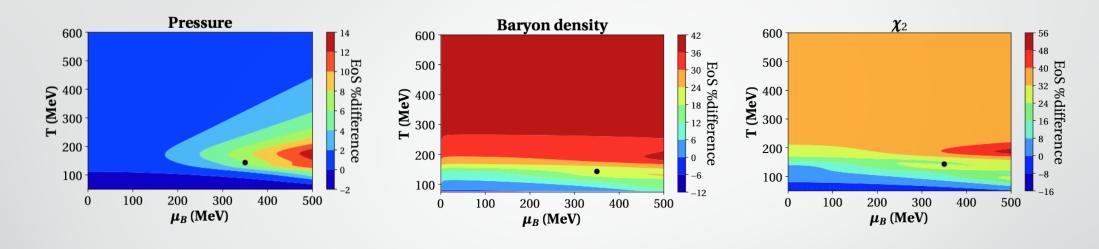
Equation of state

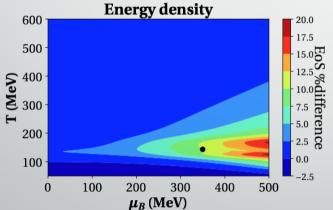
J. Karthein, C. R. et al., EPJPlus (2021)

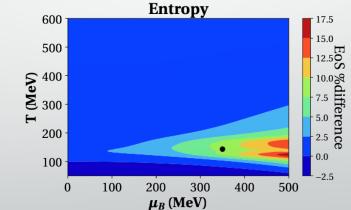

Pressure and its derivatives show effects of critical region on these quantities: stronger effects with increasing derivatives

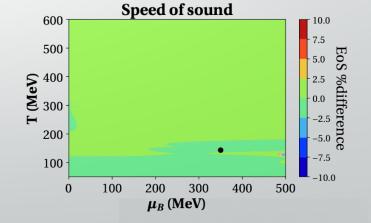
Equation of state

J. Karthein, C. R. et al., EPJPlus (2021)

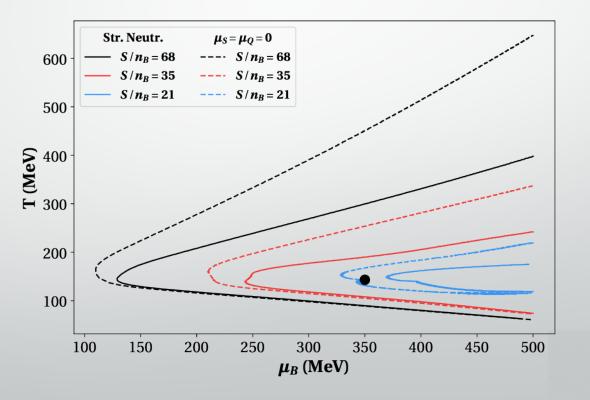

Energy density and entropy exhibit discontinuities, while the speed of sound approaches zero at the critical point






Equation of state differences

J. Karthein, C. R. et al., EPJPlus (2021)



Differences in isentropic trajectories

J. Karthein, C. R. et al., EPJPlus (2021)

- Isentropes show the path of the HIC system through the phase diagram in the absence of dissipation
 - Different path when conserved charge conditions applied

Conclusions

- From lattice QCDTaylor expansionwe currently have the EoS for $\mu_B/T<2$
- We constructed a family of Equations of State containing a Critical Point in the 3D Ising model universality class to study its effect
- The dip in the kurtosis is very difficult to observe at the chemical freeze-out
- We recently extended the EoS to the case of strangeness neutrality