Finite volume and magnetic effects on pion correlation function in HICs

Cristián Villavicencio

Universidad del Bio-Bio, Chile

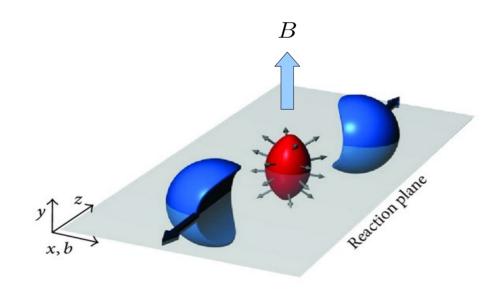
WWND, March 2022

A. Ayala, S. Bernal-Langarica, C.V, Phys. Rev. D105, 056001 (2022)

Suported by FONDECYT 1190192

Motivatrion and goal

- Magnetic field effects on two-pion correlation
- Finite volume pion condensation effects in two-pion correlation
- Anisotropy effects (cylinder)



 $C_2(P,q;T,eB,N,V)$

Outline

- Non-equilibrium chemical potential
- Finite size pion condensation effects
- Pion wave function in homogeneous magnetic field
- 2-pion correlator with fixed pion multiplicity
- Results
- Colnclusion and outlook

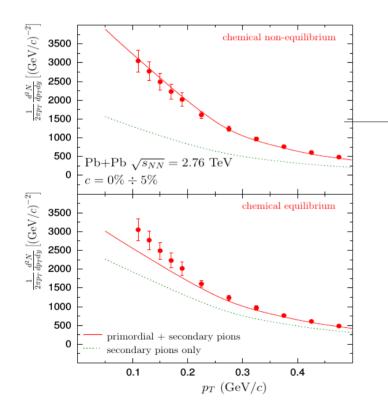
Non-equilibrium statistics with pion condensation and finite volume effects

• Out of equilibrium effective chemical potential

 \rightarrow Approximately contant number of pions

• Finite volume increases pion ground state contribution (pion condensation)

Non-equilibrium statistical hadronization model >>> non-eq. chemical potential Letessier, Rafelski, PRC59(1999)947

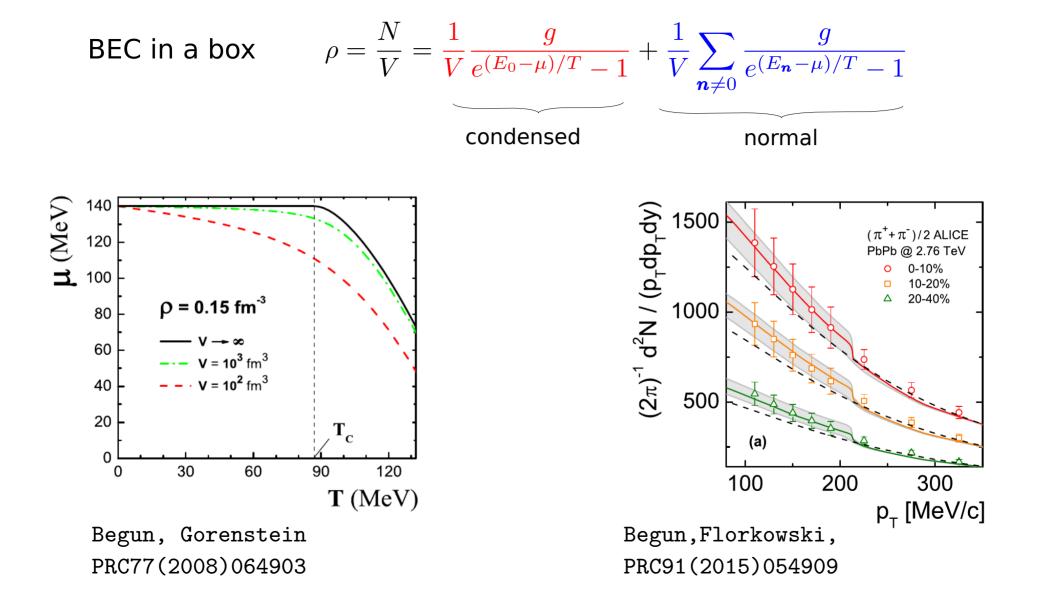


$$\mu_{\pi} = \mu_q + \mu_{\bar{q}}, \quad \mu_p = 3\mu_q, \quad \dots$$

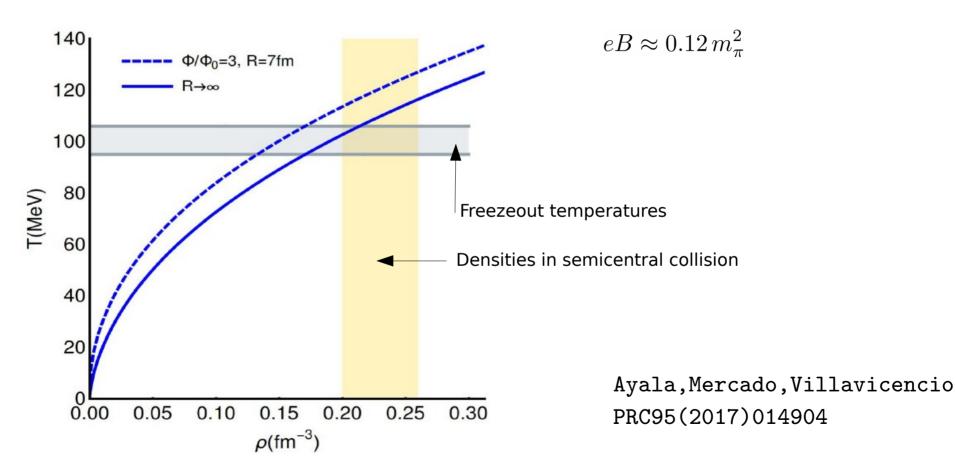
transverse momentum spectra of pions in the low-pT region Begun, Florkowski, Rybczynski, PRC90(2014)014906

 $\mu_\pi \lesssim m_{\pi^0}$ at freezout temperatures

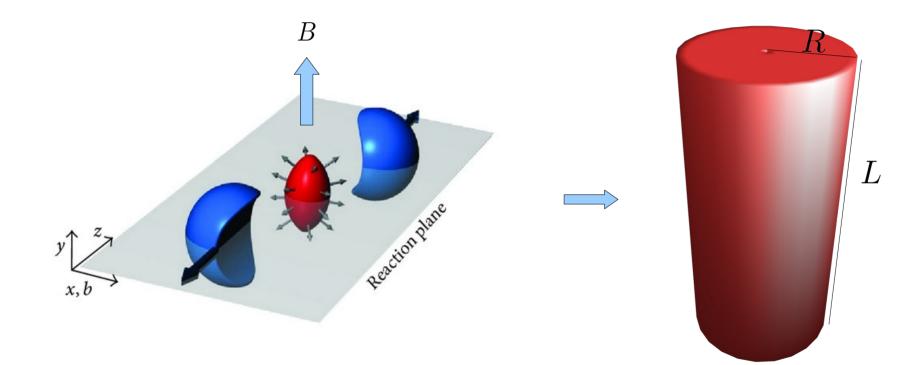
near condensation critical chemical potential



Magnetic field effects



Two-pion correlation function in a finite volume and within a magnetic field



wave function quantization under cylindrical hard wall boundaries

$$\left\{ -\left(i\frac{\partial}{\partial t}\right)^2 + \left[-i\boldsymbol{\nabla} + q\boldsymbol{A}\right]^2 + m^2 \right\} \psi(\vec{r},t) = 0, \qquad \qquad \begin{array}{ll} \psi(r=R,t) &=& 0, \\ \psi(z=\pm\frac{L}{2},t) &=& 0. \end{array}$$

$$\psi_{nlj}(r,\theta,z,t) = \tilde{A}_{nlj} e^{-iE_{nlj}t} e^{-il\theta} \cos(k_j z) e^{-\frac{qBr^2}{4}} r^l {}_1F_1\left[-a_{nl}, l+1; \frac{qBr^2}{2}\right]$$

normalization constants

$$\int d^3r \, \psi^*_{nlj}(\vec{r},t) \frac{\overleftrightarrow{\partial}}{\partial t} \psi_{nlj}(\vec{r},t) = 1$$

energy eigenvalues

quantized momentum in *z*-direction

$$k_j \equiv \frac{(2j+1)\pi}{L}$$

confluent hypergeometric function

wave function quantization under cylindrical hard wall boundaries

$$\left\{ -\left(i\frac{\partial}{\partial t}\right)^2 + \left[-i\boldsymbol{\nabla} + q\boldsymbol{A}\right]^2 + m^2 \right\} \psi(\vec{r},t) = 0, \qquad \qquad \begin{array}{ll} \psi(r=R,t) &=& 0, \\ \psi(z=\pm\frac{L}{2},t) &=& 0. \end{array}$$

$$\psi_{nlj}(r,\theta,z,t) = \tilde{A}_{nlj} e^{-iE_{nlj}t} e^{-il\theta} \cos(k_j z) e^{-\frac{qBr^2}{4}} r^l {}_1F_1 \left[-a_{nl}, l+1; \frac{qBr^2}{2} \right]$$

$$_{1}F_{1}\left[-a_{nl},l+1;rac{qBR^{2}}{2}
ight]=0$$
 boundary condition

$$a_{nl} = \frac{E_{nlj}^2 - m^2 - k_j^2}{2qB} - \frac{2l+1}{2} \qquad \Longrightarrow \qquad E_{nlj}^2 = k_j^2 + m^2 + qB(2l+1+2a_{nl}),$$

$$C_2(\vec{p_1}, \vec{p_2}) = \frac{P_2(\vec{p_1}, \vec{p_2})}{P_1(\vec{p_1})P_1(\vec{p_2})}$$

2-pion correlation function

$$P_1(\vec{p}) \equiv \frac{d^3N}{d^3p} = \frac{1}{(2\pi)^3} \sum_{\lambda} 2E_{\lambda} N_{\lambda} \psi_{\lambda}^*(\vec{p}) \psi_{\lambda}(\vec{p}).$$

$$\lambda = n, l, j$$

$$P_2(\vec{p}_1, \vec{p}_2) \equiv \frac{d^6 N}{d^3 p_1 d^3 p_2}$$

$$= P_1(\vec{p}_1)P_1(\vec{p}_2) + \left|\frac{1}{(2\pi)^3}2E_0N_0\psi_0^*(\vec{p}_1,t)\psi_0(\vec{p}_2,t)\right|^2 + \left|\frac{1}{(2\pi)^3}\sum_{\lambda\neq 0}2E_\lambda N_\lambda\psi_\lambda^*(\vec{p}_1,t)\psi_\lambda(\vec{p}_2,t)\right|^2$$

$$N_{\lambda} = \frac{1}{\exp(E_{\lambda} - \mu)/T - 1},$$

statistical weight

$$N = \sum_{\lambda} \frac{1}{\exp(E_{\lambda} - \mu)/T - 1}$$

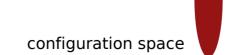
chemical potential is obtainted by fixing N

set of external parameters $T, N, qB, L, R, P, P_z, q, q_z, \theta_1, \theta_2$

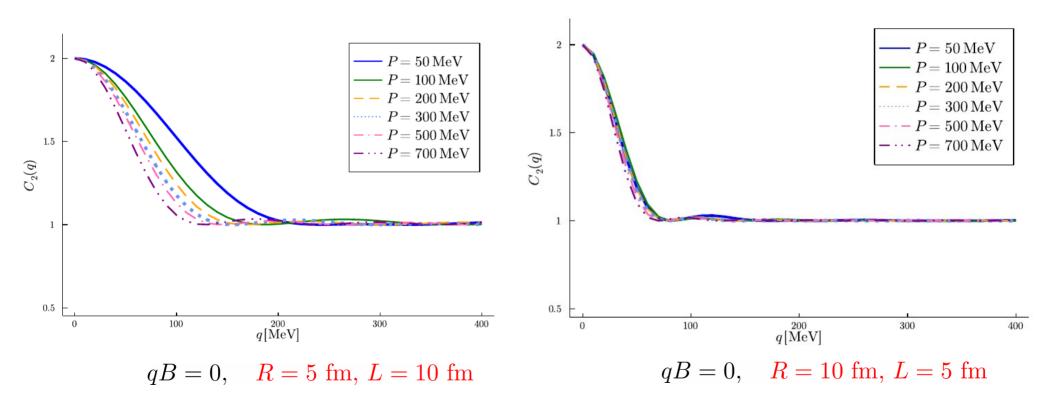
$$P = \frac{1}{2}(p_{r1} + p_{r2}) \qquad q = |p_{r1} - p_{r2}|$$

 $P_z = \frac{1}{2}(p_{z1} + p_{z2}) \qquad \qquad q_z = |p_{z1} - p_{z2}|$

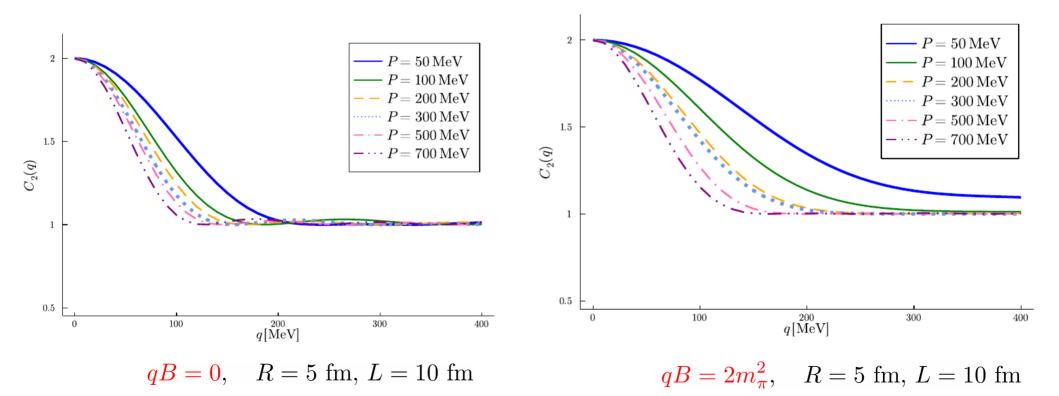
We consider $P_z \approx 0$, $q_z \approx 0$, $\theta_1 \approx \theta_2$



 $p_{z1} = p_{z2} = 0, \quad \theta_2 = \theta_1, \quad T = 100 \text{ MeV}, \quad \mu = 0 \quad (\text{dilute gas})$

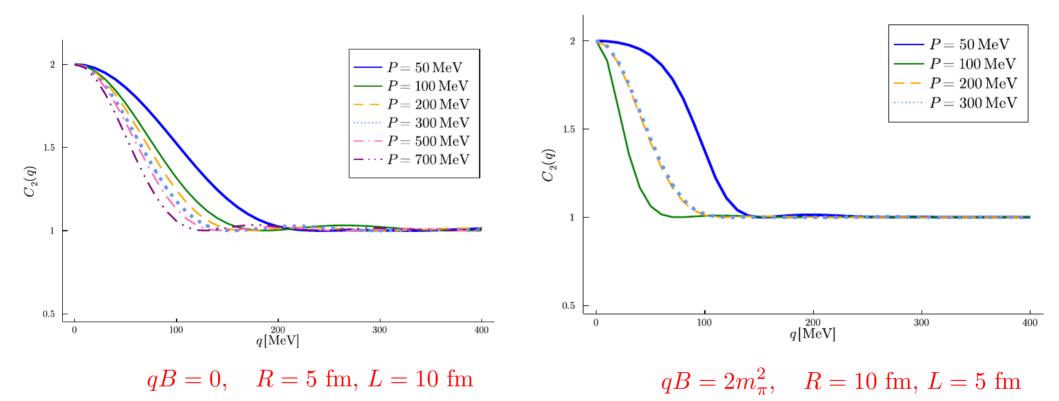


 $p_{z1} = p_{z2} = 0, \quad \theta_2 = \theta_1, \quad T = 100 \text{ MeV}, \quad \mu = 0 \quad (\text{dilute gas})$

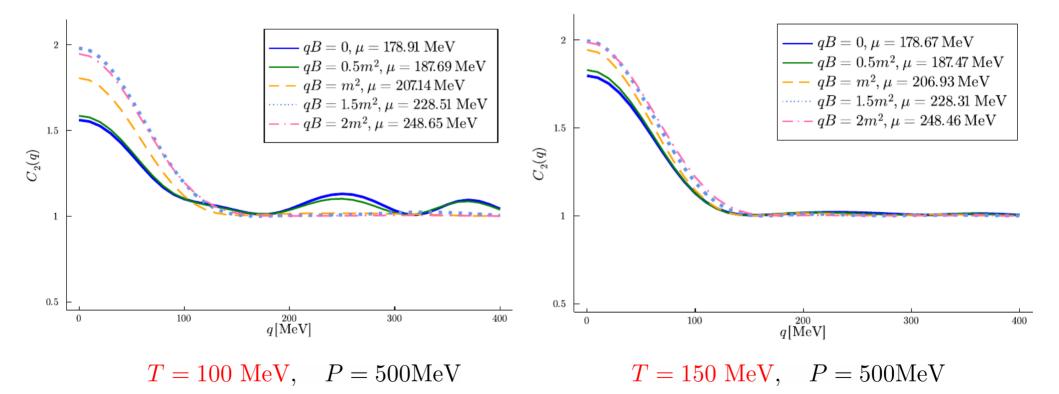


 $p_{z1} = p_{z2} = 0, \quad \theta_2 = \theta_1, \quad T = 100 \text{ MeV}, \quad \mu = 0 \quad (\text{dilute gas})$

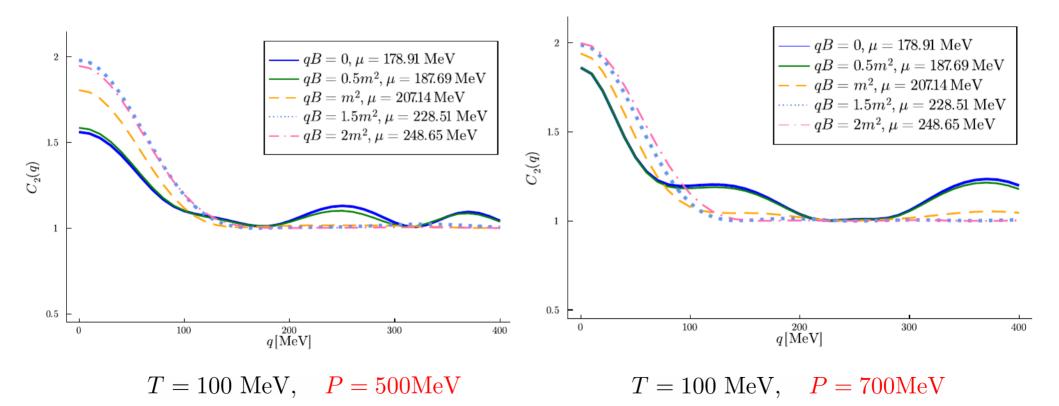
non monotonic function of P



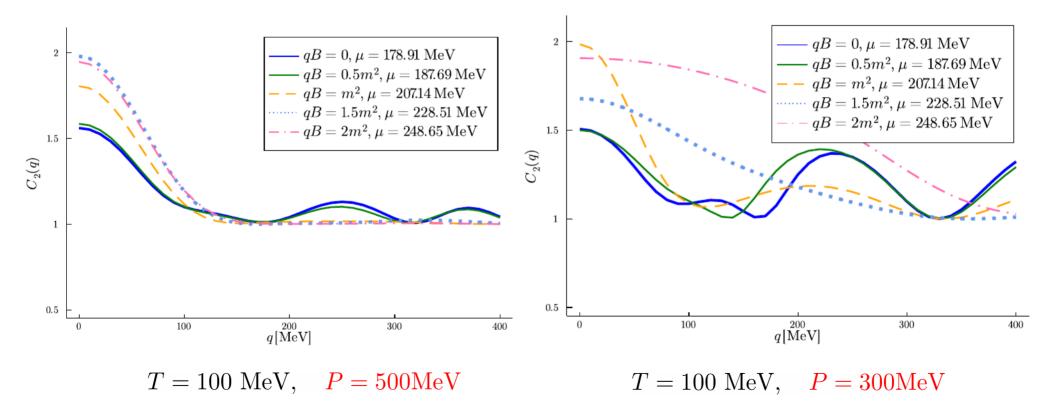
 $p_{z1} = p_{z2} = 0$, $\theta_2 = \theta_1$, R = 5 fm, L = 10 fm, N = 320 (fixed pion multiplicity)



 $p_{z1} = p_{z2} = 0$, $\theta_2 = \theta_1$, R = 5 fm, L = 10 fm, N = 320 (fixed pion multiplicity)

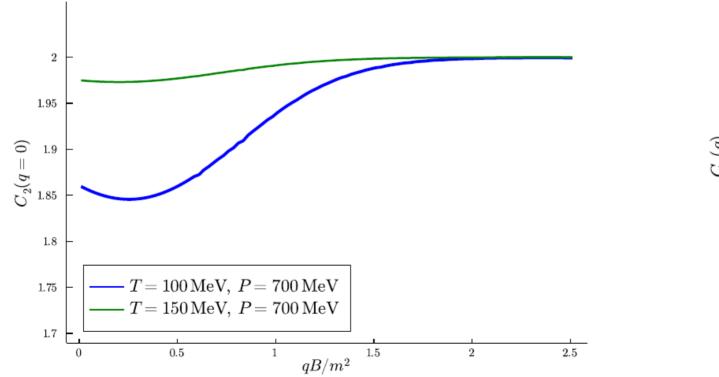


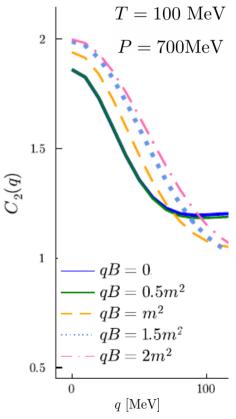
 $p_{z1} = p_{z2} = 0$, $\theta_2 = \theta_1$, R = 5 fm, L = 10 fm, N = 320 (fixed pion multiplicity)



 $p_{z1} = p_{z2} = 0$, $\theta_2 = \theta_1$, R = 5 fm, L = 10 fm, N = 320 (fixed pion multiplicity)

Tempeatrure and magnetic field reduce ground state contribution. For $qB > 0.5 m^2$ it looks like a discrete transition, but it is not.





Conclusions

- Magnetic field affects mainly slow pions (low P)
- C_2 is non-monotonic function of P for large B and R > L in dilute gas
- C_2 is non-monotonic function of B for low P and R < L in dense gas
- Ground state diminishes $C_2(0)$
- Ground state distorts C_2 for low B
- Strong magnetic field tends to destroy the condensate

Outlook

- Charged pions imbalance (isospin chemical potential)
- Back-reaction pion currents in response of magnetic field
- Fireball rotation

Conclusions

- Magnetic field affects mainly slow pions (low P)
- C_2 is non-monotonic function of P for large B and R > L in dilute gas
- C_2 is non-monotonic function of B for low P and R < L in dense gas
- Ground state diminishes $C_2(0)$
- Ground state distorts C_2 for low B
- Strong magnetic field tends to destroy the condensate

Outlook

THANKS!

- Charged pions imbalance (isospin chemical potential)
- Back-reaction pion currents in response of magnetic field
- Fireball rotation