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QCD Phase Diagram

We can explore the QCD phase
diagram by changing /s in
relativistic heavy ion collisions

Many models predict a first order
phase transition line with a critical
point

Lattice QCD is the most reliable
theoretical tool to study the QCD
phase diagram.
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QCD Phase Diagram

We can explore the QCD phase
diagram by changing /s in
relativistic heavy ion collisions

Many models predict a first order
phase transition line with a critical
point

Lattice QCD is the most reliable
theoretical tool to study the QCD
phase diagram.
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Model Requirements

The model should exhibit:

-Deconfinement

-Nearly perfect fluidity
-Agreement with Lattice EoS at
ps =0

-Agreement with baryon
susceptibilities at g = 0

v
Taylor Expansion for small ug

P(T,pg) = P(T,ug =0) _
T -

i ﬁxzn(n (Lﬁ)zn

@ How can we fulfill these conditions?

a” (P/TH
g/ T)"

where  xn(T,us) =
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Holography (Gauge/String duality)

Holographic gauge/gravity correspondence

String Theory/Classical Gravity <=  Quantum Field Theory
in 5-dimensions in 4-dimensions

Maldacena 1997; Witten 1998; Gubser, Polyakov, Klebanov 1998

o Near Perfect fluidity

@ string theory/classical gravity

strong coupling limit of QFT.

e BH solutions — T and pug in
QFT
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QGP

Nearly perfect Fluidity of the QGP

Fig. from Bernhard, Moreland, Bass, Nature Phys., 2019
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Gravitational Action

Minimal 5d holography for a non-conformal plasma at pg =0
Gursoy, Kiritsis, Mazzanti, Nitti (2008)
Gubser and Nellore, (2008)
Noronha, (2009).
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Thermodynamics at ug =0

Matching to Lattice EoS around the crossover
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Lattice Results: [WB] S Borsanyi et al.Phys. Lett. B730.99.
BH curves: BH curves: J. G et al. PRD.104 (2021)
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what about finite ug?

Following DeWolfe, Gubser, Rosen (2011)
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The coupling f(¢) is fixed to match
X5 (T, s = 0) J

Baryon susceptibility

P(P/T") _ d(ps/T?)
us/TV ~ s/ 7))

x2(T,ps) =
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Mapping the QCD phase diagram from Black Hole solutions

The BH solutions are parametrized by (¢o, ®1), where
¢o — value of the scalar field at the horizon, and

®; — electric field in the radial direction at the horizon
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Locating the Critical End Point (CEP)

Tcep = 89 MeV uSEP = 724 MeV
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Higher order susceptibilities
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Comparison with the state-of-the-art lattice QCD thermodynamics
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Equation of State
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e Transport properties
@ Transport of Baryon Charge
@ Shear and Bulk Viscosity
o Energy Loss



Baryon Conductivity op
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- Can be computed from linear
perturbations to the black hole
background fields.

- Overall dependence of og/ T with
e is relatively small.

- o8/ T remains finite at the critical
point, and exhibits a discontinuity
over the line of first order phase
transition.
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Baryon Diffusion Coefficient
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Nernst-Einstein Relation

og/ T
TDg = 7,5/ -
X2/ T
v
-Controls the fluid response to
inhomogeneities in the baryon
density
v
- The baryon diffusion charge is
suppressed as the baryon chemical
potential increases.
v
- Vanishes at the location of the
critical point.
v
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Holographic shear Viscosity
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- measures the resistance to
deformation in the presence of a

velocity gradient in the layers of the

fluid.

nT _i 1
e+p 4wl hEZE

At pug = 0, it reduces to the well
known holographic prediction 1/4m

v
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Bulk Viscosity
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Measures the resistance to
deformation of a fluid to a
compression or expansion.
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Heavy quark drag force
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- rate at which the heavy quark loses
momentum as it moves through the
strongly coupled medium with a

constant velocity.

A very heavy quark (e.g. the

bottom), which might not achieve a
very high velocity within the plasma,
is less sensitive to the in-medium
effects in comparison with a less
massive quark (e.g. the charm),
which could attain higher velocities

within the fluid.
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Heavy quark Langevin Diffusion coefficient and jet quenching parameter
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describe the thermal fluctuations of
a heavy quark trajectory with
constant velocity under Brownian
motion.
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Holographic Phase Diagram
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Holographic Phase Diagram
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Summary

@ There is an excellent agreement between the Lattice QCD EoS and the
Holographic result where there is lattice data available.

@ The holographic model, which is fixed to mimic the Lattice EoS for ug = 0,
predicts a CEP:
TEP =89 MeV, pug =724 MeV

@ With the first order phase transition line located in the QCD phase diagram, we
considerably extended the baryon chemical potential coverage of the EoS in the
QCD phase diagram.

@ The transport coefficients related to transport of baryon charge, viscosities, and
parton energy loss (12 in total) were obtained over finite baryon chemical potential
and particularly over the predicted line of first order phase transition and the
critical end point.

o Future work:

-Obtain the EoS in the strangeness and isospin chemical potential axes.



Locating the first order phase transition line
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V(¢) and f(¢)

R. Critelli et al., Phys.Rev.D96(2017).
J. G et al. arXiv:2102.12042 [nucl-th].

Free Parameters for the Holographic Model

ke = 81 Gs = 87(0.46), A = 1053.83MeV/,

V(¢) = —12cosh(0.63¢) + 0.654° — 0.054" + 0.003¢°,

f(¢) =

sech(cié + ©2¢?) c3
h
1+ ¢ 1+ c Se¢ (C4¢)7

where

Cl = —0.27, C = 0.4, C3 = 1.7, Cy = 100




Equations of Motion

AT (9)F,
S= 212 / d'x 2 K(fl 4
nonconformal 1150
ds2 — 2A(f)[ h( )dt + d72] + h(r)dr
¢ = o)
Audxt = &(r)dt

Equations of Motion

o)+ [f an )] 00 -

L[ e M09 (2 0F(9)] _,
H(r)

) | 0é 2 3¢
" (r) + [2A'(r)+ An 9N 1, )} =0

A'(r) + 7(6')2 =0
W' (r) + 4A (N (r) — e (¢)9'(r)* = 0
h(r)[24A4'(r)? = ¢'(r)*] + 6A (N (r) +2V() + e ' f(9)@'(r)* = 0



Solutions

Far-Region asymptotics:

A(r) = (r) + O(e=22), where a(r) = AP r + AF"
h(r) ar + O( —4a( r))

¢( ) —ua + O(e—(2+u) (r)

¢(I’) (Dfar ¢far —1la(r) + O(e 2+u a(r))

Thermodynamics:

o 1 A s — 27 3
4rgy” \/hE" w263
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e = ==\ PB=""3/v Iimr
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Baryon Conductivity

The EOM for the gauge invariant linearized vector perturbation a(r,w) associated to
the baryon conductivity is given by,

’ U —2A 2
<2A + h— + fc((f))¢’) d+ 5 (% - f(¢)¢’2) a=0

which again must be solved with infalling wave condition at the horizon and normalized
to unity at the boundary, what may be done by setting,

rYP(r,w)
rma)L:)P(rmamw)

a(r,w) =

The DC baryon conductivity in the EMD model is calculated by means of the following
holographic Kubo formula,

os(T,us) = % J}I%O " (e2Ahf(¢)lm[a s a/]) [MeV]
ks



Bulk Viscosity

The equation of motion (EOM) for the gauge and diffeomorphism invariant linearized
scalar perturbation H(r,w) associated to the bulk viscosity through the holographic

dictionary is,
hl 2¢// 2AN
H" aA 4+ — — H'
+< R +

—2A, 2 / " 17 Y
[eTw i (AAT - %) + Gy BAT(0) - f(¢)¢’)¢’2} H=0

which must be solved with infalling wave condition at the black hole horizon, and

normalized to unity at the boundary, what may be done be setting,
—in

H(r,w) = M

Fmax. F(Fmax, w)

The ratio between the bulk viscosity and the entropy density in the EMD model is then
calculated by making use of the following holographic Kubo formula,

l (e4Ah¢/2lm[H* HI] )

1 .
C(Taﬂs)zii lim A2

s 36 w—0 w



Collision Energy Estimates

We estimate a collision energy needed
m/s=25-41Ge/

to hit the CEP

600 4 BH freezeout 140)
3 ——SHM1 3
2, 400 — = SHM2 = 120
g. -

160f ==== minimum cZ

5 10 50 100
Vs [GeV]

m The collision energy is reachable by the next generation of

experiments.

[BH] R.Critelli, I.P. et al., Phys.Rev.D96(2017).
[HRG] Paolo Alba et al. Phys.Lett.B738(2014),
[SHM1] A. Andronic et al. Phys.Lett.B673(2009).
[SHMZ2] J. Cleymans et al. Phys.Rev.C73(2006).

5 10 50 100
Vs [GeV]
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The QCD Ciritical Point
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Low T EoS
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BH from arXiv:2201.02004v1

Critical point at T = 105 MeV and pg = 558 MeV.
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Fluctuations in The Theory and Experiment

n 4
o Susceptibilities x& = %

o Susceptibilities xZ are directly related to the

moments of the distribution

@ Volume independent ratios are useful to
compare experimental data
(b) 11.5 GeV (c) 19.6 GeV (d)27 Gev
o 1

mean: M ~ x1

c 2
variance: o° ~ x2

skewness: S ~ x3/x

kurtosis:  ~ xa/X3

3/2
2

Number of Events

Au+Au Collisions
Net-proton
0.4<p_<0.8 (GeV/c)

lyl<0.5
Skellam Dis
# 0-5%
©30-40%
070-80% -

Net-proton (AN,)

L. Adamczyk et al. Phys. Rev. Lett. 112 (2014), p. 032302.
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v
M/o* = x1/xz
So = x3/x2
2
Ko = Xa/X2
So® /M = x3/x1
V.
11/12
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is the y of a destributi
A positively skewed distribution has a “tail”
pulled in the positive direction, A negatively
skewed distnbution has a "tad” pulled in the
negative direction. Most stockmarket retums
are negatively skewed,

positive kurtosis

Positively
skewed

Frequency of returns

negative kurtesis

NORMAL NOT ALWAYS THE NORM

Kurtosis refers to how peaked the curve is:
steeper means positive kurtosis and flatter means
negative kurtosis, Fat tads occur when there are
more outsize returns on the downside or upside,

Jat rail
or both, than the normal curve suggests.
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