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QCD Phase Diagram

We can explore the QCD phase
diagram by changing

√
s in

relativistic heavy ion collisions

Many models predict a first order
phase transition line with a critical
point

Lattice QCD is the most reliable
theoretical tool to study the QCD
phase diagram.

Limitation

Sign problem
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Model Requirements

The model should exhibit:

-Deconfinement
-Nearly perfect fluidity
-Agreement with Lattice EoS at
µB = 0
-Agreement with baryon
susceptibilities at µB = 0

Taylor Expansion for small µB

P(T , µB)− P(T , µB = 0)

T 4
=

∞∑
n=1

1

(2n)!
χ2n(T )

(µB

T

)2n

where χn(T , µB) =
∂n(P/T 4)
∂(µB/T )n

How can we fulfill these conditions?

HOLOGRAPHIC BLACK HOLES!!!
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Holography (Gauge/String duality)

Holographic gauge/gravity correspondence

String Theory/Classical Gravity ⇐⇒ Quantum Field Theory
in 5-dimensions in 4-dimensions

Maldacena 1997; Witten 1998; Gubser, Polyakov, Klebanov 1998

Near Perfect fluidity

string theory/classical gravity
⇕

strong coupling limit of QFT.

BH solutions → T and µB in
QFT
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QGP

Nearly perfect Fluidity of the QGP
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Gravitational Action

Minimal 5d holography for a non-conformal plasma at µB = 0

Gursoy, Kiritsis, Mazzanti, Nitti (2008)
Gubser and Nellore, (2008)

Noronha, (2009).

S =
1

2κ2
5

∫
M5

d5x
√
−g

R − (∂µϕ)
2

2
− V (ϕ)︸ ︷︷ ︸

nonconformal


Conformal invariance is broken by V (ϕ).
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Thermodynamics at µB = 0

Matching to Lattice EoS around the crossover
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Lattice Results: [WB] S Borsanyi et al.Phys. Lett. B730.99.

BH curves: BH curves: J. G et al. PRD.104 (2021)
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what about finite µB?

Following DeWolfe, Gubser, Rosen (2011)

S =
1

2κ2
5

∫
M5

d5x
√
−g

R − (∂µϕ)
2

2
− V (ϕ)︸ ︷︷ ︸

nonconformal

−
f (ϕ)F 2

µν

4︸ ︷︷ ︸
µB ̸=0



The coupling f (ϕ) is fixed to match
χB
2 (T , µB = 0)

Baryon susceptibility

χ2(T , µB) =
∂2(P/T 4)

∂(µB/T )2
=

∂(ρB/T
3)

∂(µB/T )

Any calculation at µB ̸= 0 is a
prediction!!

140 160 180 200 220 240 260 280 300
0

0.05

0.1

0.15

0.2

0.25

0.3

[WB] S Borsanyi et al.Phys. Lett. B730.99.

BH curves: J. G et al. PRD.104 (2021)

Joaquin Grefa QCD EoS and Transport Properties From Holography 11 / 28



Table of Contents

1 The QCD Phase Diagram

2 Holographic Black Hole Model
Thermodynamics at µB = 0

3 Results

4 Transport properties
Transport of Baryon Charge
Shear and Bulk Viscosity
Energy Loss

5 Summary

Joaquin Grefa QCD EoS and Transport Properties From Holography 12 / 28



Mapping the QCD phase diagram from Black Hole solutions

The BH solutions are parametrized by (ϕ0,Φ1), where

ϕ0 → value of the scalar field at the horizon, and

Φ1 → electric field in the radial direction at the horizon
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Thermodynamics in a wide region of the phase diagram..!!

T ∈ [2, 550] MeV, µB ∈ [0, 1100] MeV
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Locating the Critical End Point (CEP)

TCEP = 89 MeV µCEP
B = 724 MeV
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BH curves: J. G et al. PRD.104 (2021)
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Higher order susceptibilities

Lattice Results: [WB] S Borsanyi et al. arXiv:1805.04445v1.

BH curves: R. Critelli et al., Phys.Rev.D96(2017).
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Comparison with the state-of-the-art lattice QCD thermodynamics
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Lattice results: S. Borsanyi et al. 10.1103/PhysRevLett.126.232001

BH curves: J. G et al. PRD.104 (2021)
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Equation of State

BH curves: J. G et al. PRD.104 (2021)
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Baryon Conductivity σB
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- Can be computed from linear
perturbations to the black hole
background fields.

- Overall dependence of σB/T with
µB is relatively small.

- σB/T remains finite at the critical
point, and exhibits a discontinuity
over the line of first order phase
transition.
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Baryon Diffusion Coefficient
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Nernst-Einstein Relation

TDB =
σB/T

χB
2 /T

2

-Controls the fluid response to
inhomogeneities in the baryon
density

- The baryon diffusion charge is
suppressed as the baryon chemical
potential increases.

- Vanishes at the location of the
critical point.
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Holographic shear Viscosity
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- measures the resistance to
deformation in the presence of a

velocity gradient in the layers of the
fluid.

ηT

ϵ+ p
=

1

4π

1

1 + µBρB
Ts

At µB = 0, it reduces to the well
known holographic prediction 1/4π
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Bulk Viscosity
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ϵ+ p
(T , µB) =

ζ

s

1

1 + µBρB
Ts

Measures the resistance to
deformation of a fluid to a
compression or expansion.
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Heavy quark drag force
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- rate at which the heavy quark loses
momentum as it moves through the
strongly coupled medium with a

constant velocity.

A very heavy quark (e.g. the
bottom), which might not achieve a
very high velocity within the plasma,
is less sensitive to the in-medium
effects in comparison with a less
massive quark (e.g. the charm),
which could attain higher velocities
within the fluid.
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Heavy quark Langevin Diffusion coefficient and jet quenching parameter
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Langevin diffusion coefficients

describe the thermal fluctuations of
a heavy quark trajectory with
constant velocity under Brownian
motion.

The jet quenching parameter

characterizes the energy loss from
collisional and radiative processes of
high energy partons produced by the
interaction with the hot and dense
medium they travel through.

Their inflection point provides
another way to characterize the
crossover region.

Joaquin Grefa QCD EoS and Transport Properties From Holography 24 / 28



Holographic Phase Diagram
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Holographic Phase Diagram
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Summary

There is an excellent agreement between the Lattice QCD EoS and the
Holographic result where there is lattice data available.

The holographic model, which is fixed to mimic the Lattice EoS for µB = 0,
predicts a CEP:

TCEP = 89 MeV, µCEP
B = 724 MeV

With the first order phase transition line located in the QCD phase diagram, we
considerably extended the baryon chemical potential coverage of the EoS in the
QCD phase diagram.

The transport coefficients related to transport of baryon charge, viscosities, and
parton energy loss (12 in total) were obtained over finite baryon chemical potential
and particularly over the predicted line of first order phase transition and the
critical end point.

Future work:
-Obtain the EoS in the strangeness and isospin chemical potential axes.
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Locating the first order phase transition line
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V (ϕ) and f (ϕ)

R. Critelli et al., Phys.Rev.D96(2017).

J. G et al. arXiv:2102.12042 [nucl-th].

Free Parameters for the Holographic Model

κ2
5 = 8πG5 = 8π(0.46), Λ = 1053.83MeV ,

V (ϕ) = −12 cosh(0.63ϕ) + 0.65ϕ2 − 0.05ϕ4 + 0.003ϕ6,

f (ϕ) =
sech(c1ϕ+ c2ϕ

2)

1 + c3
+

c3
1 + c3

sech(c4ϕ),

where

c1 = −0.27, c2 = 0.4, c3 = 1.7, c4 = 100

Joaquin Grefa QCD EoS and Transport Properties From Holography 2 / 12



Equations of Motion

S =
1

2κ2
5

∫
M5

d5x
√
−g

R − (∂µϕ)
2

2
− V (ϕ)︸ ︷︷ ︸

nonconformal

−
f (ϕ)F 2

µν

4︸ ︷︷ ︸
µB ̸=0


ds2 = e2A(r)[−h(r)dt2 + d−→x 2] + e2B(r)dr2

h(r)

ϕ = ϕ(r)
Aµdx

µ = Φ(r)dt

Equations of Motion

ϕ′′(r) +

[
h′(r)

h(r)
+ 4A′(r)

]
ϕ′(r)− 1

h(r)

[
∂V (ϕ)

∂ϕ
− e−2A(r)Φ′(r)2

2

∂f (ϕ)

∂ϕ

]
= 0

Φ′′(r) +

[
2A′(r) +

d [ln f (ϕ)]

dϕ
ϕ′(r)

]
Φ′(r) = 0

A′′(r) +
ϕ′(r)2

6
= 0

h′′(r) + 4A′(r)h′(r)− e−2A(r)f (ϕ)Φ′(r)2 = 0

h(r)[24A′(r)2 − ϕ′(r)2] + 6A′(r)h′(r) + 2V (ϕ) + e−2A(r)f (ϕ)Φ′(r)2 = 0
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Solutions

Far-Region asymptotics:

A(r) = α(r) +O(e−2να(r)), where α(r) = Afar
−1r + Afar

0

h(r) = hfar
0 +O(e−4α(r)),

ϕ(r) = ϕAe
−να(r) +O(e−(2+ν)α(r)),

Φ(r) = Φfar
0 +Φfar

2 e−1α(r) +O(e−(2+ν)α(r)),

Thermodynamics:

T =
1

4πϕ
1/ν
A

√
hfar
0

Λ s =
2π

κ2
5ϕ

3/ν
A

Λ3

µB =
Φfar

0

ϕ
1/ν
A

√
hfar
0

Λ ρB = − Φfar
2

κ2
5ϕ

3/ν
A

√
hfar
0

Λ3
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Baryon Conductivity

The EOM for the gauge invariant linearized vector perturbation a(r , ω) associated to
the baryon conductivity is given by,

a′′ +

(
2A′ +

h′

h
+

f ′(ϕ)

f (ϕ)
ϕ′
)
a′ +

e−2A

h

(
ω2

h
− f (ϕ)Φ′2

)
a = 0

which again must be solved with infalling wave condition at the horizon and normalized
to unity at the boundary, what may be done by setting,

a(r , ω) =
r−iωP(r , ω)

r−iω
max P(rmax , ω)

The DC baryon conductivity in the EMD model is calculated by means of the following
holographic Kubo formula,

σB(T , µB) = − Λ

2κ2
5ϕ

1/ν
A

lim
ω→0

1

ω

(
e2Ahf (ϕ)Im[a ∗ a′]

)
[̇MeV ]
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Bulk Viscosity

The equation of motion (EOM) for the gauge and diffeomorphism invariant linearized
scalar perturbation H(r , ω) associated to the bulk viscosity through the holographic
dictionary is,

H ′′ +

(
4A′ +

h′

h
+

2ϕ′′

ϕ
− 2A′′

A′

)
H ′+[

e−2Aω2

h2
+

h′

h

(
A′′

A′ − ϕ′′

ϕ′

)
+

e−2A

hϕ′ (3A′f ′(ϕ)− f (ϕ)ϕ′)Φ′2
]
H = 0

which must be solved with infalling wave condition at the black hole horizon, and
normalized to unity at the boundary, what may be done be setting,

H(r , ω) =
r−iωF (r , ω)

r−iω
max F (rmax , ω)

The ratio between the bulk viscosity and the entropy density in the EMD model is then
calculated by making use of the following holographic Kubo formula,

ζ

s
(T , µB) = − 1

36π
lim
ω→0

1

ω

(
e4Ahϕ′2Im[H∗H ′]

A′2

)
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Collision Energy Estimates
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The QCD Critical Point
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Low T EoS
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BH from arXiv:2201.02004v1

Critical point at T = 105 MeV and µB = 558 MeV.
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Fluctuations in The Theory and Experiment

Susceptibilities χB
n = ∂n(P/T 4)

∂(µB/T )n

Susceptibilities χB
n are directly related to the

moments of the distribution

Volume independent ratios are useful to
compare experimental data

mean: M ∼ χ1

variance: σ2 ∼ χ2

skewness: S ∼ χ3/χ
3/2
2

kurtosis: κ ∼ χ4/χ
2
2

M/σ2 = χ1/χ2

Sσ = χ3/χ2

κσ2 = χ4/χ2

Sσ3/M = χ3/χ1
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