Initializing BSQ with Open-Source ICCING

Patrick Carzon

37th Winter Workshop on Nuclear Dynamics

March 2^{nd} , 2022

ntroduction

 $\mathbf{2}$

Contents

- I. Connecting of Initial State to Final StateII. Conserved Charges in Initial StateIII. ICCING AlgorithmIV. Results
- V. Future
- VI. Conclusion

Geometry Observables

Fourier Series of Initial State

$$E_n = \epsilon_n e^{in\phi_n}$$

*ε*₂{2}

2-Particle Correlation

$$\epsilon_n\{2\} = \sqrt{\langle \epsilon_n^2 \rangle}$$

4-Particle Correlation

$$\epsilon_n\{4\} = \sqrt[4]{2\langle\epsilon_n^2\rangle^2 - \langle\epsilon_n^4\rangle}$$

Fluctuations of Geometry Eccentricities

Less

$$\frac{\epsilon_n \{4\}}{\epsilon_n \{2\}} = \sqrt[4]{1 - \frac{Var(\epsilon_n^2)}{\langle \epsilon_n^2 \rangle^2}}$$
More

Hydrodynamic Evolution

Noronha-Hostler et al, Phys.Rev. C90 (2014), 034907

Trento Matches Experiment

Trento can match experimental data despite different choices for evolution

Canceling Medium Effects

Mostly linear response cancels out across different models that have varying viscosity

Fewer Fluctuations

Alba et al, **Phys.Rev. C98 (2018), 034909**

Initial State

$$E_n = \epsilon_n e^{in\phi_n}$$

 $V_n \approx \kappa_n E_n$
Mostly linear response
Final State
 $V_n = v_n e^{in\phi_n}$
 $\frac{v_n\{4\}}{v_n\{2\}} \approx \frac{\kappa_n \epsilon_n\{4\}}{\kappa_n \epsilon_n\{2\}}$

Teaney et al, PRC 83, 064904 (2011), PRC 86, 044908 (2012); Qiu et al, PRC 84, 024911 (2011); Gardim et al, Noronha-Hostler et al, **Phys.Rev. C93 (2016) no.1, 014909** Giacalone et al, **Phys.Rev. C95 (2017) no.5, 054910**

Why Initialize Charges?

- Beam Energy Scan (BES) is on-going
 Search for QCD critical point
- As you go to low beam energies, hydro phase runs for shorter time than hadron phase
 - This means transport coefficients will become more important
- There are many unknowns in these systems
 - Using LHC data we can start to constrain transports for lower energies
- Another limiting factor, hydro must be 3D for low energy systems and makes them harder to study

Structure of the Proton

Introducing Conserved Charges

Initial Conserved Charges n Nuclear Geometry

Carzon, Martinez, Sievert, Wertepny, Noronoha-Hosler arXiv: 1911.12454 [nucl-th]

Flow Chart

CING Algorithm

Quark Multiplicities

An increase in low energy gluons leads to a proportional increase in all flavors of quark

PC, MM, MS, DW, JNH arXiv: 1911.12454 [nucl-th]

Transferring a Gluon

Gluons are subtracted proportionally so, when deposited, structure remains

Distribution of Quark Pair

Ī

Ī

S

Quarks deposited as gaussian blobs; energy contains information about momentum fraction

\Box CING lgorithm

Final Densities

- ICCING is model agnostic
 - Choose Initial Energy Density
 - Choose Splitting Probs.
 - Choose Spatial Corr. Funcs.
 - Choose Output Format
- Strangeness sees a different geometry
- ICCING is open source, pcarzon/ICCING (github.com)

PC, MM, MS, DW, JNH arXiv: 1911.12454 [nucl-th]

Consistency Check

Triangularity

 ε_n is not well defined for charge geometries, thus selecting on positive charge only. Currently working on new estimators of this geometry.

Almaalol, Carzon, Sievert, Noronha-Hostler, Noronha, Luzum in progress

Results

Pre-Hydrodynamic Evolution

- Early evolution of quarks using KøMPøST method
- Greens Functions introduce time dependent quark radius
- Will be released in a future version of ICCING

Carzon, Plaschke, Martinez, Schlichting, Sievert, Noronha-Hostler to appear soon

Hydrodynamics with BSQ Charges

- Contains BSQ evolution
- EOS: Noronha-Hostler, Parotto, Ratti, Stafford [PRC100 064910 (2019)]
- Modular Hydro Code with many new features planned
- Will be made open-source

Hydrodynamics with BSQ Charges

Almaalol, Carzon, Cruz Camacho, Dore, Mroczek, Plumberg, Spychalla, Sievert, Noronha-Hostler to appear soon

Future

Thank you!

- $B_{tot} = S_{tot} = Q_{tot} = 0$ in IS, but there can be local fluctuations of charge
- Gluon splitting can introduce charge fluctuations while preserving experimental agreement
- ICCING is open source, <u>pcarzon/ICCING (github.com)</u>
- ICCING is model agnostic
- Effects of ICCING remain even after hydro expansion
- Flow observables of identified particles will help understand this further

onclusion

Backup

ICCING Algorithm

Algorithm: Selecting Quark

Up and Down behave similarly, Strange has a shallower increase and levels out further

Strange is in Hot spots!

