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The Big Picture
We have gone from asking, “Does the QGP exist?” to “Precisely how does 
QCD lead to the emergent phenomena we observe?”
• Qualitative observations:
• Jets are quenched
• Medium is a nearly ideal fluid
• Understanding the Event Geometry is necessary to understand the medium

• Qualitative observations à quantitative descriptions (qhat, h/S, s, S, k)
sPHENIX experiment will allow us to capitalize on RHIC and its major 
upgrades and answer fundamental questions about QCD
• How do quarks and gluons form a strongly coupled, nearly perfect liquid?
• What are the properties of the medium?
• What is the dependence of these properties on scale?
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sPHENIX Science Mission
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Jet structure
Vary momentum/angular 
scale of probe

Quarkonium spectroscopy
vary size of probe

Parton energy loss
vary mass/momentum 
of probe

“Probe the inner workings of QGP by resolving its properties 
at shorter and shorter length scales. The complementarity of 

[RHIC and the LHC] is essential to this goal, as is a state-of-
the-art jet detector at RHIC, called sPHENIX.” 

WG5 for 2019 ECFA process
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Cold QCD
vary temperature of 
QCD Matter



sPHENIX Timeline
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sPHENIX
science 

collaboration

DOE CD-0
“Mission need”
approval

20162015 2017 2018 2019 2020 2021 2022 2023

Installation &
commissioning

DOE CD-1/3A
Cost, schedule,
advance purchase
approval

sPHENIX à data taking in early 2023

BNL PD-2/3
Final project 
design approval

Au+Au
2023

p+p/p+Au
2024

Au+Au
2025
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145B (240B) MB Au+Au (5 yr plan)à
~1.5 orders of magnitude more Au+Au
events than taken at RHIC to date

We are 
here!!



sPHENIX Design
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Outer HCAL
SC Magnet
Inner HCAL

EMCAL
TPC

INTermediate Tracker
MAPS VerTeX Detector

All can be read out at the sPHENIX 15 kHz 
trigger rate
• DAQ hybrid streaming/triggered
• TPC/MVTX streaming
• Calorimeters triggered

1.5 Tesla B field 
(Babar Magnet)



sPHENIX Construction Today
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32 Outer HCal Sectors are fully installed as of 
Monday!!

First Two IHCal sectors on IHCal Barrel



Azimuthal Correlations
Azimuthal correlation structures arise from: 
• Elliptic flow à anisotropic hydrodynamic 

expansion of the medium from an anisotropic 
initial state 

• Non-flow à resonances, jets and …
• Event-by-Event Fluctuations
Observation of ~NCQ scaling for v2 distributions 
in semi-central events was considered one of 
the “smoking guns” for QGP existence
• Story is now considerably more complicated 
à Need to decrease statistical and systematic 
uncertainty!
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Azimuthal Flow

Monte Carlo Glauber Model

Centrality

12

Flow translates spatial geometry anisotropy to momentum anisotropy

Y(Δϕ) = G{1 + 2
∞

∑
n=1

vn,n cos(nΔϕ)}

“Near side ridge”
“Away side ridge”



Reminder - Measuring “Flow”
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vn = cosn(φ −ΨRP )

Measure symmetry plane YRP and correlate other measured 
particles
Reaction 
plane is 
not 
precisely 
the event 
plane
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Azimuthal Flow

Monte Carlo Glauber Model

Centrality

12

Flow translates spatial geometry anisotropy to momentum anisotropy

Y(Δϕ) = G{1 + 2
∞

∑
n=1

vn,n cos(nΔϕ)}

“Near side ridge”
“Away side ridge”

YRP



sPHENIX Event Plane Detector (sEPD)
It would be helpful for the sPHENIX science mission to be able to 
measure the event plane AND centrality outside of mid-rapidity.
• Avoids auto-correlations with the presence of a hard process à

Jets/HF
• Allows a more apples-to-apples comparison with data from LHC 

experiments à Complementarity
•Will also improve sPHENIX ßàSTAR data comparisons
sEPD was not part of the MIE à NSF MRI to build an event plane
detector similar to the STAR EPD
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sEPD Philosophy
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STAR scintillator design

sPHENIX Electronics



Sector Design
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• 2 Wheels of 12 sectors with 31 optically-isolated tiles
• 1.2-cm-thick scintillator 

• Total of 12x31x2=744 channels
• Router = 0.9 m, Rinner = 4.6 cm
• Planned location of ~z = 319 cm

• 2.0 < |h|<  4.9
• STAR: 375 cm (2.1 < |h|< 5.1)
• PHENIX BBC: (3.1 < |h|< 3.9)
• sPHENIX MBD: 250 cm  (3.51 < |h| < 4.61)

• Wavelength shifting fibers (3x loops) glued into tiles
• Machined out of a single piece of scintillator 



Forward Particle Distributions
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• sEPD 2.0 < |h|<  4.9
• MBD: 3.51 < |h| < 4.61
• Large acceptance with 

azimuthal symmetry with h
gap from mid-rapidity is very 
useful for many analyses
• Especially important for

small systems



sEPD CNC Machining
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Vacuum plate to hold sector for 
first machining à Improvement 
over clamps used for STAR EPD
• Smaller CNC Machine à

Multistep Process A lot of coolant is required to prevent
microcracking

Acrylic 
Step 1



Isolation Grooves
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Mill “half-way” and fill groves with TiO2 + epoxy 
mixture (reflective epoxy)
• Optical isolation!
Flip over and finish milling the groves + Fiber 
channels



WLS Fiber Preperation
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Connectors polished 
prior to gluing, 
inserts for panel 
screws

3D-printed 
custom 
connectors

Reflective 
Paint

Reflective 
Paint on 
Ends

Reflective paint for “Central Channel”
• Decreases cross-talk
Fiber ends paintedà Increases light yield by ~30-50%



sEPD Sector Construction
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• Connector glued into place (reflective epoxy), then fibers (optical epoxy)
• Central channel and front grooves filled with reflective epoxy
• Tape removed and scintillator polished

Optical Isolation is important!  
Sectors will be checked after 
construction



sEPD Sector Construction
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• Connector glued into place (reflective epoxy), then fibers (optical epoxy)
• Central channel and front grooves filled with reflective epoxy
• Tape removed and scintillator polished

High Tech 
Fiber Sorter



Sector Wrapping
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One layer of Tyvek (for reflectivity) & 2 layers of thick black paper (for 
light tightness)



Simulation Scintillator Performance

Rosi Reed - WWND2022 20

sEPD Tile Signal Truncation

Truncation Method arXiv

To reduce noise from Landau
fluctuations, the signal of the tiles can
be truncated
Nmip = dE

dEMPV

Optimized input signal :

NmipTruncate ⌘
(

Nmip, Nmip < Mx
Mx , otherwise

Mx is determined per tile & centrality
based on the most probable number of
hits that will pass through a given tile

details on occupancy study : indico

Ejiro Umaka (Iowa State University) sEPD simulation August 16, 2021 5 / 9
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sPHENIX Simulation Large tail in the Landau 
distribution will diminish 
the signal à Truncation 
routine

Mx determined by most 
probable value of # of 
Hits

Centrality



Mechanical Frame

Rosi Reed - WWND2022 21

Strongback mounts to a frame just inside of the sPHENIX Solenoidal magnet à 4” of clearance 
with the magnet doors à Last on, first off during installation



Cosmic Check Sector S01
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Blank Channel

Cosmic check of first sector validates SiPM choice 
+ sPHENIX Electronics Selection (Also validates 
sector construction process)

Prototype 
Electronics



Uniformity Testing of Sectors
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Test with 90Sr Source and
Cosmic Rays

• Uniformity of response for 
each tile is checked via 90Sr 
Source

• Efficiency will be 
determined via Cosmic Rays

• Select best sectors for
detector



sEPD Event Plane Resolution
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• Second order EP resolution calculated
via subevent method (YN vs YS)

• Better resolution than MBD due to
larger acceptance

• Weighting can be done ring-by-ring to 
improve resolution
• Truncation values can also be 

tuned
• Waiting for start of data taking to 

validate



Azimuthal Distributions of Jets
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Allows measurements of the 
modification of the jet yield with 
respect to the reaction plan (jet v2)
• Path-length dependent Energy 

Loss 
• Complementary to measurements 

which have a different sensitivity 
to: path-length dependence, 
event-by-event energy loss 
fluctuations
• Example - di-jet asymmetries

• Jet v2 allows one to better 
disentangle multiple effects



Jets in Small Systems
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Figure 4: Left: measurement of a non-zero v2 (red) for high-pT hadrons in 0-5% p+Pb collisions at
the LHC [22]. Right: statistical projection of a jet v2 measurement (left) in 0–5% p+Au collisions atp
sNN = 200 GeV in sPHENIX, using the MBD (gray) and sEPD (red) detectors for the event plane

selection.

1.2.6 Results from Prior Support

Rosi Reed’s previous NSF funded work that most closely aligns with this project is:
NSF award 1614474 "Differential Measures of Parton Energy Loss in the Quark Gluon Plasma Using

Photon Jet Correlations" 11/2015 - 11/2019 for an amount of $337,009.
Intellectual Merit

Under 1614474 the Lehigh group completed the successful construction, installation, commissioning
and calibration of the STAR Event Plane Detector (EPD) in conjunction with the Ohio State University
team. This grant supported the construction of all of the optical fibers needed for the detector, as well
as the support needed to analyze and calibrate the data. The EPD had an amazingly uniform response,
with a timing resolution of 0.4 ns, meeting the design requirements.

Under 1614474 Prashanth Shanmuganathan finished the analysis started during his Ph.D. phase
transition, there is a double sign change in the beam energy dependence of the directed flow of baryons.
He analyzed the directed flow of the ⇤ baryon and found that it showed a very similar behavior to the
proton. The double sign change in the directed flow of these baryons suggests a first-order phase transition,
but the large statistical uncertainty prevented us from making strong quantitative conclusions [24].
Broader Impacts

The activities under this grant included mentoring graduate and undergraduate students in hardware,
coding, and analysis. Reed, as a member of an underrepresented group in physics, recruits and mentors
students from these groups. The Lehigh research group is currently 55% women. Reed has mentored 7
REU students at Lehigh, 6 of these have gone on to graduate school with the 7th applying this year.
The summer project for three of these students was associated with grant 1614474. In addition to these
activities Reed has helped to organize the diversity and career sessions for the annual RHIC AGS Users
meeting as a member of the Users Executive Committee.
Dissemination of Results

Under this grant, Lehigh group members have given 13 talks (including 3 by graduate students, 1 by
an undergraduate, and 1 colloquia), and have shown seven posters at Quark Matter, the RHIC Users
Meeting and the Division of Nuclear Physics (DNP) conference. A small author jet review paper was
published in reviews of modern physics [1] and some initial details of the STAR EPD were published
in [25]. The NIM article detailing the EPD was published in [5], with the electronics testing published
in [26]. All REU undergraduates who did summer research with the Lehigh group have presented their
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v2 for high pT particles (i.e. jets) is not zero in 
pA!
• Standard paradigm of AA collisions à v2 

aresults from a path-length dependent 
Eloss
• Observation of jet quenching in pA

collisions
• No other indications (example RpA ~ 1)

• Major challenge in the understanding of 
small systems

• Is our understanding of AA collisions
correct?



Jets in Small Systems with sPHENIX

10 12 14 16 18 20 22 24 26 28 30
 [GeV]

T
pJet 

0.02-

0.01-

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08je

t
2v

Pr
oj

ec
te

d +Au 0-5%p Projection, Year 2, sPHENIX
) = 0.04 (MBD)2YRes(
) = 0.20 (sEPD)2YRes(

Rosi Reed - WWND2022 27

10 12 14 16 18 20 22 24 26 28 30
 [GeV]

T
pJet 

1

10

210

 S
ig

ni
fic

an
ce

je
t

2v
Pr

oj
ec

te
d 

+Au 0-5%p Projection, Year 2, sPHENIX
) = 0.04 (MBD)2YRes(
) = 0.20 (sEPD)2YRes(

Allows a more precise + differential measurement of the jet v2 in pAu
• Complement other measurements of jet production and modification
• Allows for a more complete picture of hard processes in small systems 



Small System Discrepancy
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QM2019: STAR  preliminary results in conflict with 
PHENIX published results in v3 in p+Au and d+Au

• PHENIX has completed new analysis confirming the 
results with different sensitivity to various 
experimental effects

• STAR/PHENIX have very different detector 
acceptances à discrepancy may reveal interesting 
physics 
• h dependent effects!

STAR 
QM2019

PHENIX data update

R. Belmont, UNCG BNL Seminar, 2 November 2021 - Slide 32

PHENIX, arXiv:2107.06634 (submitted to Phys. Rev. C)
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PHENIX has completed a new analysis confirming the results published in Nature Physics

All new analysis using two-particle correlations with event mixing instead of event plane method
—Completely new and separate code base
—Very di↵erent sensitivity to key experimental e↵ects (beam position, detector alignment)

It’s essential to understand the two experiments have very di↵erent detector acceptances
—STAR-PHENIX discrepancy may actually reveal interesting physics

PHENIX, 
PhysRevC.105.024901



STAR and PHENIX detector comparison

The PHENIX Nature Physics paper uses the BBCS-FVTXS-CNT detector combination
—This is very di↵erent from the STAR analysis

We can try to use FVTXS-CNT-FVTXN detector combination to better match STAR
—Closer, and “balanced” between forward and backward, but still di↵erent

R. Belmont, UNCG BNL Seminar, 2 November 2021 - Slide 33

Small System Discrepancy
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“We furthermore recommend 
that more data will be taken 
in the future, with the 
upgraded STAR and the new 
sPHENIX detectors which 
significantly extend the 
rapidity coverage.” à Report 
from Task Force on Small 
Systems Flow (J.Dunlop)

PHENIX

STAR 2015

Au p/d/He
Pseudorapidity

Figure from R. Belmont, IS2021

STAR EPD (2.1-5.1) STAR EPDSTAR iTPC(-1.5-1.5)

sPHENIX EPD (2-5) sPHENIX
(-1.1-1.1)

Now:

2024:
sPHENIX EPD (2-5)



sEPD Advantages
• The sEPD will expand the acceptance of sPHENIX, and we can 

see that there is a lot of interesting physics with 
pseudorapidity dependence
• Small system “discrepancy” between STAR and PHENIX shows

that we have a lot to learn!
• In addition to jet v2 and v3 we will be able to measure heavy 

flavor azimuthal distributions
•Centrality can be quantified in this forward region
•Much, much more

Rosi Reed - WWND2022 30



Centrality Performance
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• The event plane detector is also a good centrality detector!
• It is important to have centrality/event activity defined outside of mid-rapidity
• Especially necessary for jet measurements in lower multiplicity events



Conclusions
• Improved capabilities from accelerator upgrades + sPHENIX

will result in an exciting Era of HI collisions at RHIC
• Improved tracking, calorimetry (including hadronic)
• Increased kinematic reach + improved statistics

• sPHENIX will probe the QGP structure at a variety of scales
• On track for data taking in 2023!
• Complementary to HI LHC measurements in 2020s
• Allow new observables to  be measured at RHIC à rich QGP and 

QCD physics (b-jets, b-dijet, D-D correlations + others)
• Motivated by HEP experience

• The sPHENIX EPD will play a large role in many future 
measurements

32Rosi Reed - WWND2022

The jet physics 
program with 
sPHENIX
V.Bailey Tuesday

Heavy Flavor and 
Quarkonia Physics at 
sPHENIX
T.Marshall Friday



Back Up
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Connector Construction

34

• After painting, fibers are glued into 
prepared connectors

• Hand polished à ~8 hours per connector

Rosi Reed - WWND2022

Sanded with 320 grit

Polished w/1um diamond 
polishing sheets

Prototype



Impact of EP Resolution  
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• The event plane detector improves EP resolution in AA + pA
• From PAC Meeting: Dunlop PAC Talk (slide 9):

Dennis Perepelitsa

https://indico.bnl.gov/event/11308/contributions/47820/attachments/35369/57704/Dunlop_PAC_2021.pdf


Conclusions in a Nutshell

• In summary, there is no sign that any of the two analyses is technically wrong. 
We believe that all the observed differences could be ascribed to the different 
treatment of nonflow effects and of the flow (and non-flow) rapidity 
dependence. 

• In conclusion, this controversy brings up useful physics questions. Resolving 
them will require more data, taken with upgraded STAR and the sPHENIX
detectors, and probably improved methods of analysis. 

22 June 2021 Dunlop Small Systems Flow Task force 36


