Calculation of 3-pion Coulomb Scattering using Scalar QED

Dhevan Gangadharan (University of Houston) Winter Workshop on Nuclear Dynamics 2022

1

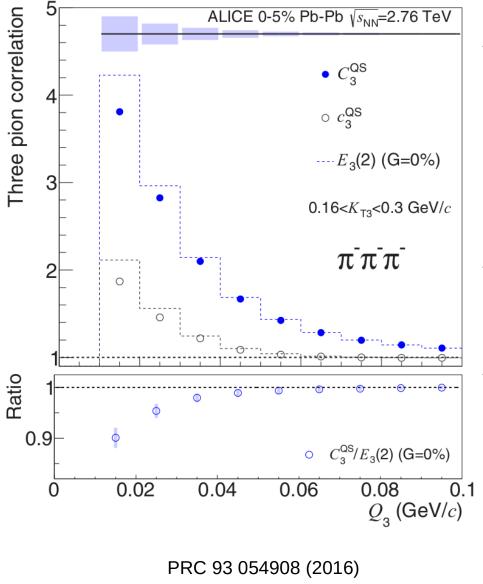
Outline

Central question

How do the true 3-pion Coulomb interactions compare to the commonly used asymptotic approximations in high-energy hadronic collisions?

- 1) Why are 3-pion Coulomb interactions important?
- 2) Feynman diagram approach to calculating Coulomb interactions.
- 3) Scalar QED Feynamn rules.
- 4) Benchmark studies using 2-pion QED calculations at NNLO.
- 5) 3-pion QED calculations at NNLO.

Motivation: Why are 3-pion Coulomb interactions important?



ALICE measurements of 3-pion Bose-Einstein correlations revealed a suppression wrt expectations (dashed lines).

3-body Coulomb interactions were taken into account using an asymptotic ansatz that is valid at sufficiently "large" triplet relative momentum Q_3 .

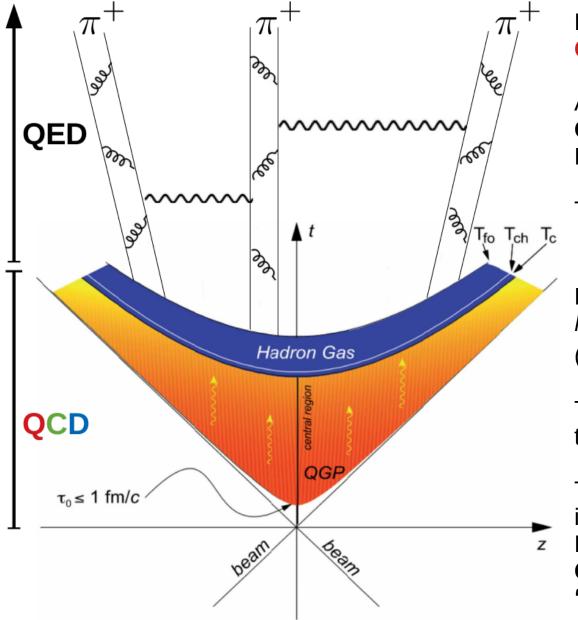
Ansatz Coulomb factor used:

$$K_3 = K_{12} \, K_{13} \, K_{23}$$

A calculation of genuine 3-body Coulomb interactions is needed to be sure about the origin of this suppression.

$$Q_3 = \sqrt{q_{12}^2 + q_{13}^2 + q_{23}^2}$$

Feynman diagram approach to calculating Coulomb interactions



Before freeze out, QCD processes dominate.

After freeze out, **QED** dominates the interaction Between charged pions.

The production amplitude of a pair/triplet at kinetic freeze out is referred to as M_0

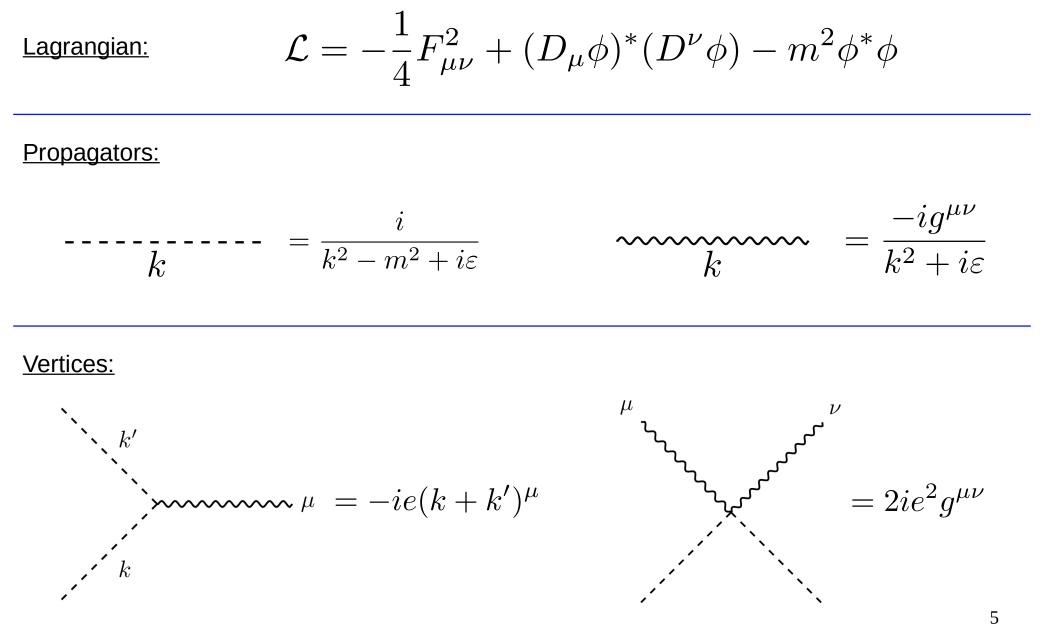
For simplicity,

 M_0 is treated as momentum independent (point-source Gamow approximation).

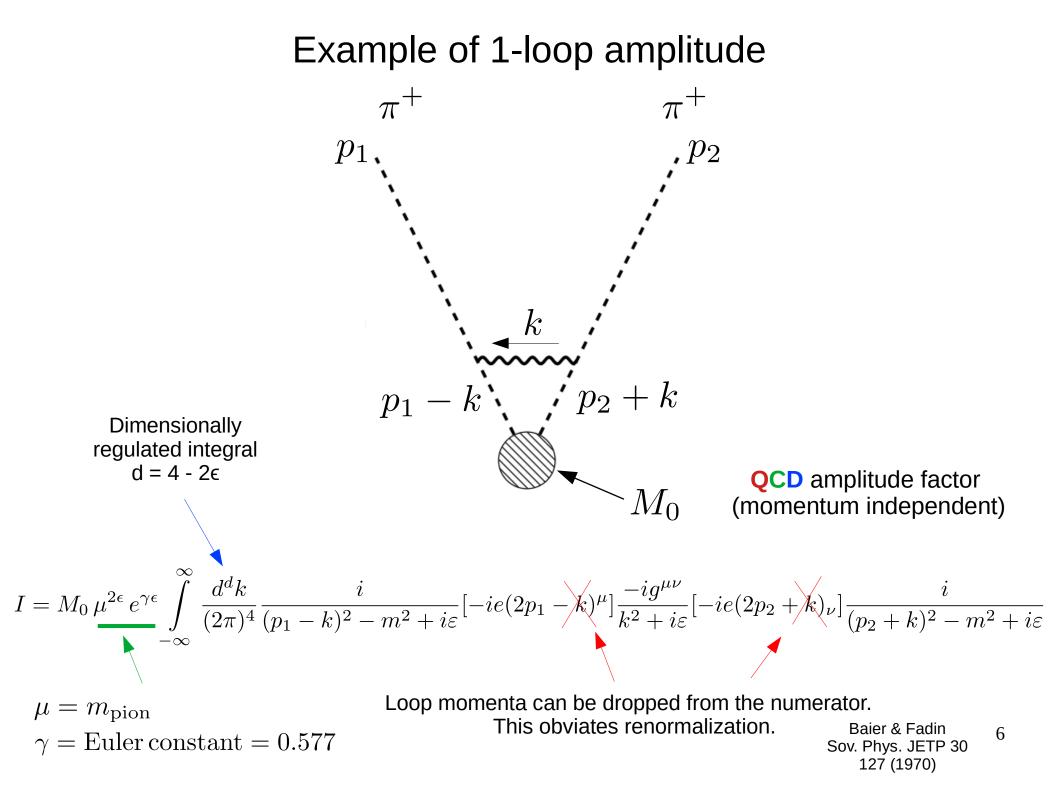
The calculation presented here pertains to the QED interactions after freeze out.

The calculation is needed to help interpret the suppression of 3-pion
Bose-Einstein correlations.
Quantum coherence at freeze out or "extra" Coulomb repulsion? 4

Scalar QED Feynman rules



Matthew Schwartz Quantum field theory and the standard model



Non-relativistic solution to 2-pion problem: Gamow factor

Some non-relativistic simplifications to the propagator are justified after a scale transformation:

$$\mathbf{k} \to \mathbf{p}\mathbf{k}, \quad \mathbf{k}^0 \to \mathbf{p}^2/\mathrm{m}\,\mathbf{k}^0 \qquad \begin{array}{c} \text{Date is a radius}\\ \text{Sov. Phys. JETP 30}\\ 127 \, (1970) \end{array}$$

After this, Baier and Fadin showed how to resum the entire perturbative series analytically to obtain the well-known QM result of 2-body Coulomb from George Gamow

$$|\psi|^2 \equiv C_2 = \frac{\frac{4\pi}{qa}}{e^{\frac{4\pi}{qa}} - 1}$$

Gamow 2-body Coulomb factor Valid for point-source emission

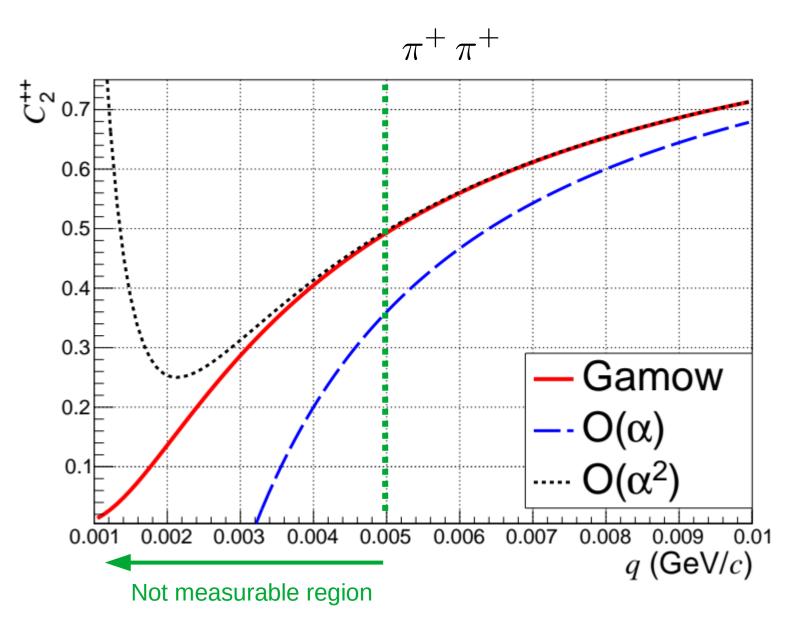
$$q = \sqrt{-(p_1^{\mu} - p_2^{\mu})^2}$$

a

Lorentz invariant relative momentum

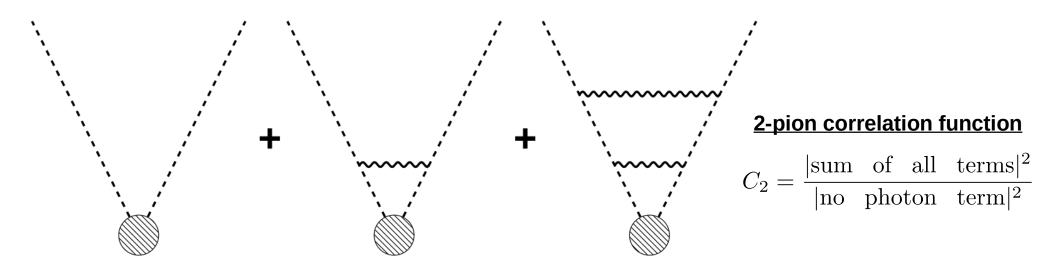
Bohr radius of the pair: 388 fm for pions

2-pion Gamow compared to $O(\alpha)$ and $O(\alpha^2)$ expansion



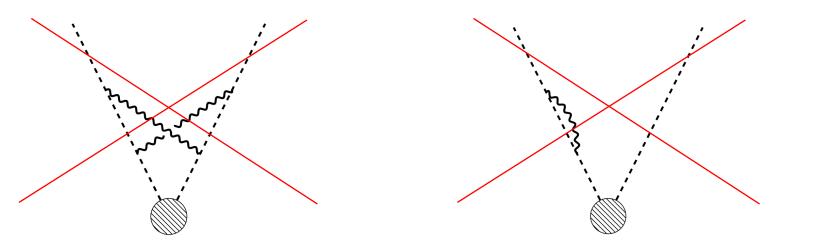
Just 2 terms in the series is very accurate in the measurable region!!

2-pion diagrams to be calculated using scalar QED



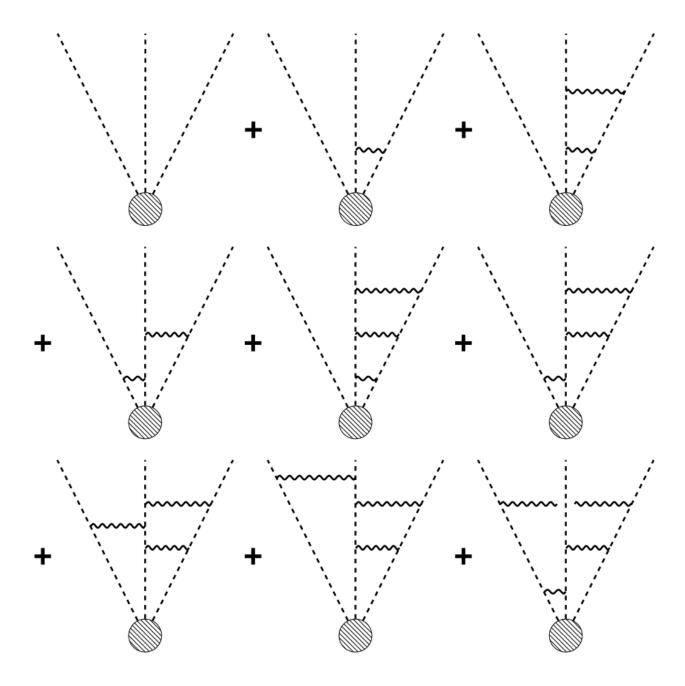
Only straight "ladder" diagrams are important at low relative momentum

Baier & Fadin Sov. Phys. JETP 30 127 (1970)



9

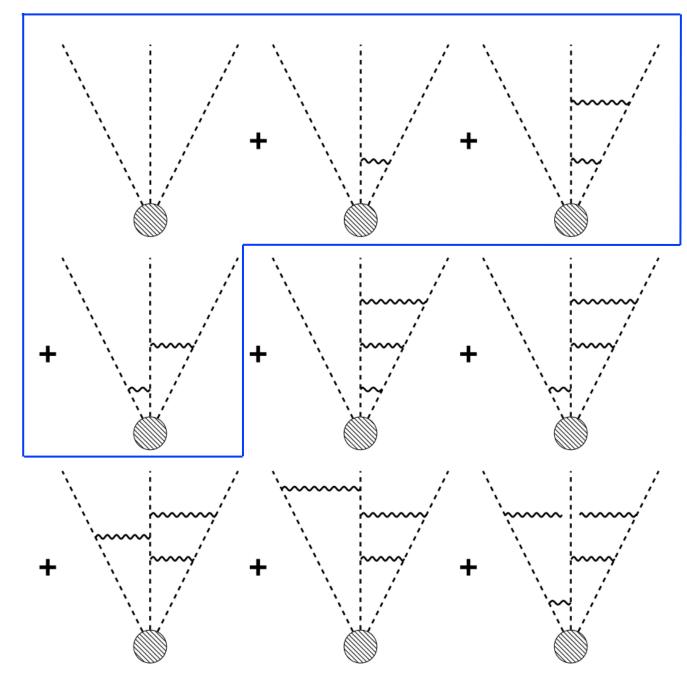
3-pion diagrams to be calculated using scalar QED



3-pion correlation function

$$C_3 = \frac{|\text{sum of all terms}|^2}{|\text{no photon term}|^2}$$

3-pion diagrams to be calculated using scalar QED



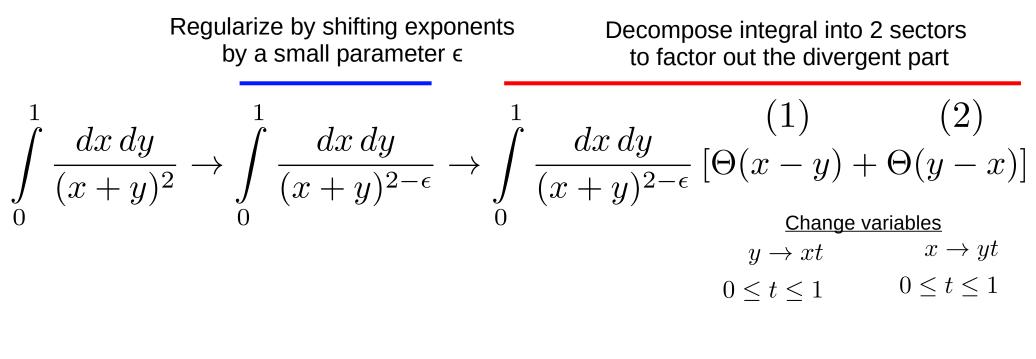
3-pion correlation function

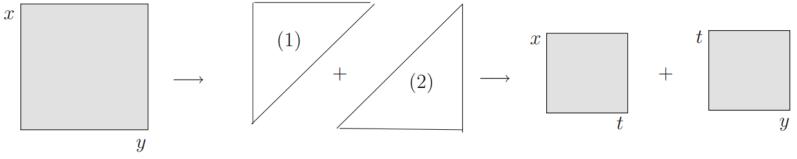
 $C_3 = \frac{|\text{sum of all terms}|^2}{|\text{no photon term}|^2}$

Only these terms have been calculated at the moment

The rest need special treatment on a GPU farm

Sector decomposition and dimensional regularization





G. Heinrich arXiv:0803.4177

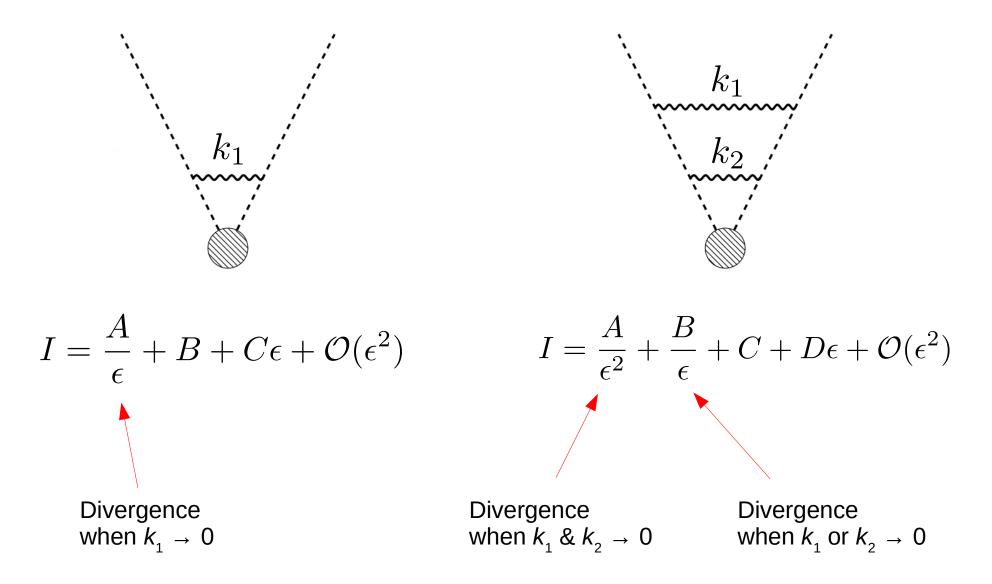
Sector decomposition and dimensional regularization

$$\int_{0}^{1} \frac{dx \, dy}{(x+y)^{2-\epsilon}} \left[\Theta(x-y) + \Theta(y-x)\right] = \int_{0}^{1} \frac{x \, dx \, dt}{(x(1+t))^{2-\epsilon}} + \int_{0}^{1} \frac{y \, dy \, dt}{(y(1+t))^{2-\epsilon}}$$

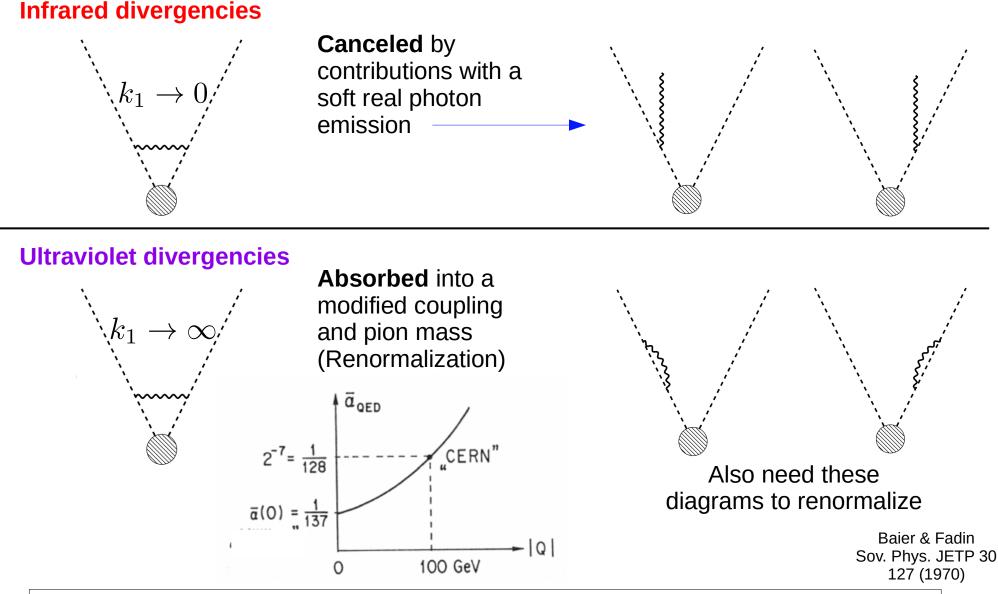
$$= 2 \left[\int_{0}^{1} \frac{dx}{x^{1-\epsilon}}\right] \left[\int_{0}^{1} \frac{dt}{(1+t)^{2-\epsilon}}\right] = 2 \left[\frac{1}{\epsilon}\right] \left[\frac{1}{2}(1+\epsilon(1-\ln 2))\right]$$

$$= \frac{1}{\epsilon} + (1-\ln 2)$$
Divergent part Finite part Finite part 13

General form of Feynman integrals with dimensional regularization



Infrared and Ultraviolet divergencies



Important simplification: For low momentum pions, real photon emission is highly suppressed and also the "standard" values of $\alpha_{_{QED}}$ and $m_{_{pion}}$ can be used. **That means that the divergent terms can simply be discarded.**

15

GPGPU-based computation

The Feynman integrals are evaluated numerically using the software package:

pySecDec

Gudrun Heinrich et al. arXiv: 1703.09692

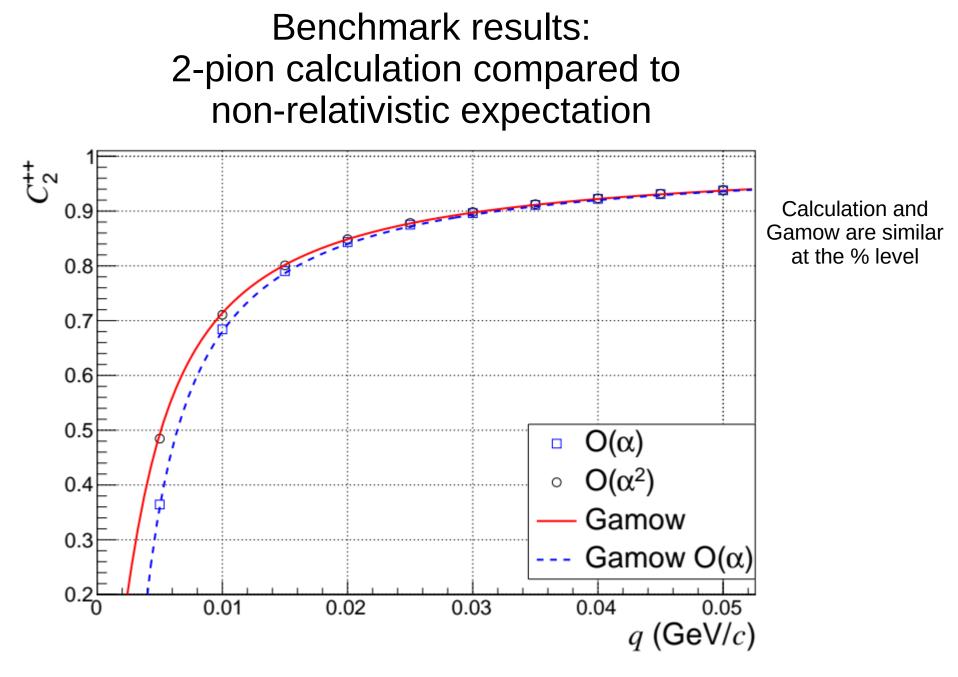
- General-Purpose GPUs (GPGPU) are used to speed up the calculation.
- 1- and 2-loop diagrams can be calculated on a single GPGPU card
- 3-loop diagrams need a farm of GPGPUs

Compute times with a **single** high-end GPGPU

	1-loop	2-loop	3-loop
Compute time	~1 min	~1 day	> 1 month

My GPGPU

Claudia Ratti's GPGPU farm at UH



The calculation should **not** be identical to Gamow but they should be close: Quantum Field Theory \rightarrow Quantum Mechanics as $q \rightarrow 0$

3-pion kinematics

Amplitudes are projected against the usual triplet Lorentz invariant relative momentum

$$Q_3 = \sqrt{q_{12}^2 + q_{13}^2 + q_{23}^2}$$

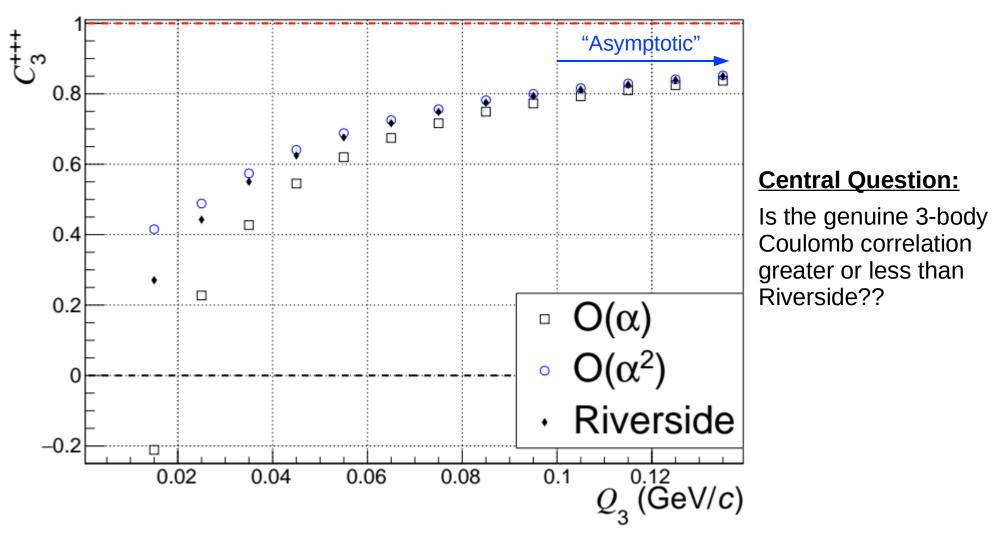
For a single value of Q_3 , there is a continuum of pair configurations. For a point-source, the momentum spectrum is flat, which yields the phase-space weight:

 $W \propto q_{12} \, q_{13} \, q_{23}$

Two schemes of 3-pion kinematics are chosen:

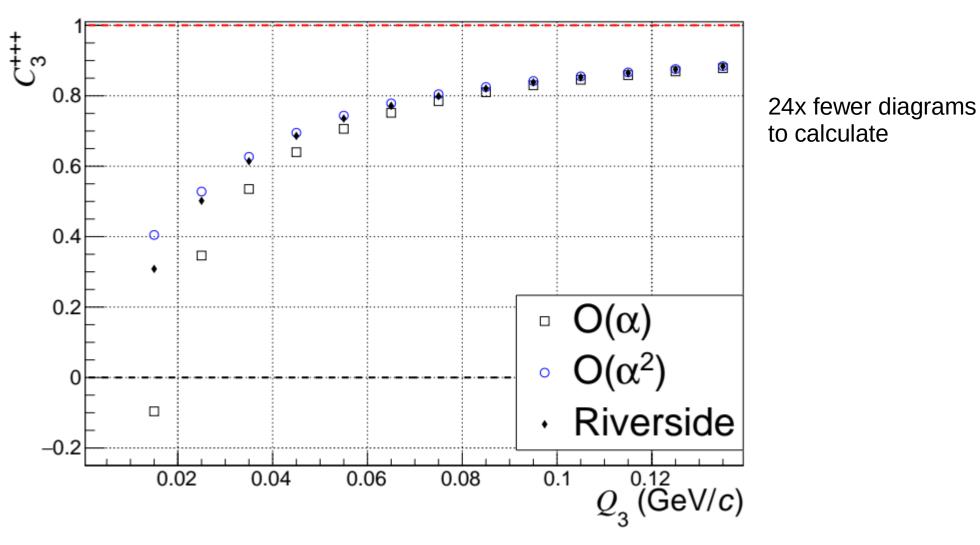
- 1) <u>Weighted pair configurations</u> (4 chosen): ranges from the most asymmetric to symmetric pair configurations. For each, 6 pair permutated diagrams need to be computed: 4*6 = 24 diagrams per Q_3 value.
- 2) <u>Symmetric configuration</u>: $q_{12} = q_{13} = q_{23}$. **1 diagram per Q₃ value**. This scheme might be the only way forward for 3-loop diagrams.

3-pion Result: Weighted pair configurations



- $Q_3 > 0.1$ GeV, O(α^2) is very similar to Riverside (asymptotic solution).
- Each order appears to contribute with sign = $(-1)^{N}$: O(α) negative, O(α^{2}) positive.
 - Need one more order to get an answer to the central question.

3-pion Result: Symmetric pair configuration



- ToDo: calculate 3-loop contributions, O(α^3), at lowest and highest Q_3 points only.
- That should be decisive in answering the central question.

Summary

- Coulomb interactions between 2- and 3-pions are perturbatively calculable with scalar QED in the measurable kinematics of virtually all high-energy experiments.
- Sector decomposition is a powerful tool to numerically calculate the Feynman integrals.
- At low relative momentum (non-relativistic case), IR and UV divergencies can simply be discarded from the dimensionally regularized integrals.
- For 2-pions, 2 terms in the series is sufficient.
- For 3-pions, one may need 3 terms for $Q_3 <\sim 100$ MeV/c (series decreases less rapidly).

ToDo

• Calculate $O(\alpha^3)$ diagrams. Should be decisive in answering the central question:

Is the asymptotic 3-body Coulomb solution justified in high-energy hadronic collisions??