

An Introduction to EIC Physics

From physics motivation to a viable detector concept

Friederike Bock (ORNL) March 3, 2022

ENERGY

LOW X

37th Winter Workshop on Nuclear Dynamics, Puerto Vallarta, Mexico

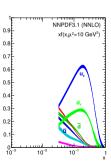
1/23

Where we are:

- ullet Elastic leptron scattering determined the nucleon's charge & magnetism distributions in sphere with $\langle r_{ch} \rangle \approx 0.84$ fm
- Largest fraction of energy in proton (x) carried by 3 valence quarks (2u,d) but very small fraction of proton spin
- Nucleons additional dynamically generated quark-antiquark pairs & gluons carrying low fraction of energy
- Quark & gluon longitudinal momentum fractions well mapped out
- Nucleon spin & mass have large contributions from quark-gluon dynamics, described by QCD

Proton early 1900s

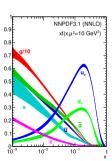
Where we are:


- Elastic leptron scattering determined the nucleon's charge & magnetism distributions in sphere with $\langle r_{ch} \rangle \approx 0.84$ fm
- Largest fraction of energy in proton (x) carried by 3 valence quarks (2u,d), but very small fraction of proton spin
- Nucleons additional dynamically generated quark-antiquark pairs & gluons carrying low fraction of energy
- Quark & gluon longitudinal momentum fractions well mapped ou
- Nucleon spin & mass have large contributions from quark-gluon dynamics, described by QCD

Proton 1975

Where we are:

- Elastic leptron scattering determined the nucleon's charge & magnetism distributions in sphere with $\langle r_{ch} \rangle \approx 0.84$ fm
- Largest fraction of energy in proton (x) carried by 3 valence quarks (2u,d), but very small fraction of proton spin
- Nucleons additional dynamically generated quark-antiquark pairs & gluons carrying low fraction of energy
- Quark & gluon longitudinal momentum fractions well mapped out
- Nucleon spin & mass have large contributions from quark-gluon dynamics, described by QCD


Proton early 1900s

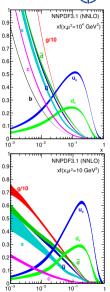
Proton 1975

Proton 2015

EIC

Where we are:

- Elastic leptron scattering determined the nucleon's charge & magnetism distributions in sphere with $\langle r_{ch} \rangle \approx 0.84$ fm
- Largest fraction of energy in proton (x) carried by 3 valence quarks (2u,d), but very small fraction of proton spin
- Nucleons additional dynamically generated quark-antiquark pairs & gluons carrying low fraction of energy
- Quark & gluon longitudinal momentum fractions well mapped out
- Nucleon spin & mass have large contributions from quark-gluon dynamics, described by QCD


Proton early 1900s

Proton 1975

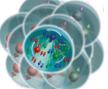
Proton 2015

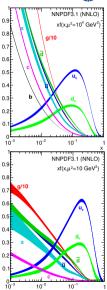
EIC *

Where we are:

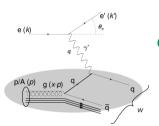
- Elastic leptron scattering determined the nucleon's charge & magnetism distributions in sphere with $\langle r_{ch} \rangle \approx 0.84$ fm
- Largest fraction of energy in proton (x) carried by 3 valence quarks (2u,d), but very small fraction of proton spin
- Nucleons additional dynamically generated quark-antiquark pairs & gluons carrying low fraction of energy
- Quark & gluon longitudinal momentum fractions well mapped out

 Nucleon spin & mass have large contributions from quark-gluon dynamics, described by QCD

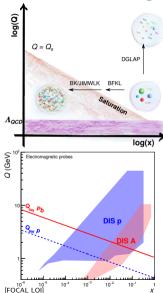

Proton early 1900s


Proton 1975

Proton 2015

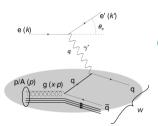

Proton in a nucleus

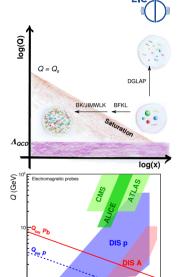
How did we learn this?


Deep Inelastic Scattering (DIS)

$$Q^2 = s \cdot x \cdot y$$

- s center-of-mass energy squared
- Q^2 resolution power
 - x the fraction of the nucleon's momentum carried by the struck quark (0 < x < 1)
 - y inelasticity
- As a probe, electron beams provide unmatched precision of the electromagnetic interaction
- Direct, model independent determination of parton kinematics and spin of physics processes at the leading order
- Additional information obtained indirectly from hadron-collider measurements




How did we learn this?

Deep Inelastic Scattering (DIS)

$$Q^2 = s \cdot x \cdot y$$

- s center-of-mass energy squared
- Q^2 resolution power
 - x the fraction of the nucleon's momentum carried by the struck quark (0 < x < 1)
 - y inelasticity
- As a probe, electron beams provide unmatched precision of the electromagnetic interaction
- Direct, model independent determination of parton kinematics and spin of physics processes at the leading order
- Additional information obtained indirectly from hadron-collider measurements

FOCAL LO

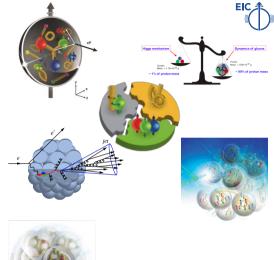
- The 3D distributions of sea quarks & gluons and their spins in nucleon
- How do the nucleon mass & spin emerge from them and their interactions?
- The details of interactions of color-charged quarks and gluons with a nuclear medium
- How are nuclear bindings and hadronic states created from quark, gluons and their interactions?
- How does a dense nuclear environment affect the quarks and gluons and their interactions?
- The gluon density in nuclei
- Is there a Color Glass Condensate?

3/23

- The 3D distributions of sea quarks & gluons and their spins in nucleon
- How do the nucleon mass & spin emerge from them and their interactions?
- The details of interactions of color-charged quarks and gluons with a nuclear medium
- How are nuclear bindings and hadronic states created from quark, gluons and their interactions?
- How does a dense nuclear environment affect the quarks and gluons and their interactions?
- The gluon density in nuclei
- Is there a Color Glass Condensate?

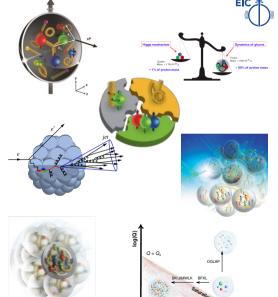
3/23

- The 3D distributions of sea quarks & gluons and their spins in nucleon
- How do the nucleon mass & spin emerge from them and their interactions?
- The details of interactions of color-charged quarks and gluons with a nuclear medium
- How are nuclear bindings and hadronic states created from quark, gluons and their interactions?
- How does a dense nuclear environment affect the quarks and gluons and their interactions?
- The gluon density in nuclei
- Is there a Color Glass Condensate?

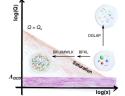


- The 3D distributions of sea quarks & gluons and their spins in nucleon
- How do the nucleon mass & spin emerge from them and their interactions?
- The details of interactions of color-charged quarks and gluons with a nuclear medium
- How are nuclear bindings and hadronic states created from quark, gluons and their interactions?
- How does a dense nuclear environment affect the quarks and gluons and their interactions?
- The gluon density in nuclei
- Is there a Color Glass Condensate?

- The 3D distributions of sea quarks & gluons and their spins in nucleon
- How do the nucleon mass & spin emerge from them and their interactions?
- The details of interactions of color-charged quarks and gluons with a nuclear medium
- How are nuclear bindings and hadronic states created from quark, gluons and their interactions?
- How does a dense nuclear environment affect the quarks and gluons and their interactions?
- The gluon density in nuclei
- Is there a Color Glass Condensate?



3/23



- The 3D distributions of sea quarks & gluons and their spins in nucleon
- How do the nucleon mass & spin emerge from them and their interactions?
- The details of interactions of color-charged quarks and gluons with a nuclear medium
- How are nuclear bindings and hadronic states created from quark, gluons and their interactions?
- How does a dense nuclear environment affect. the quarks and gluons and their interactions?
- The gluon density in nuclei
- Is there a Color Glass Condensate?

March 3, 2022

3/23

The Electron Ion Collider

[EIC CDR]

General Facts

Location: Brookhaven National Laboratory

• Projected Budget: \approx \$2.4 billion

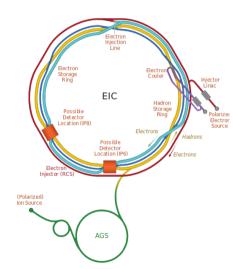
• Start date: pprox 2031

Machine parameters for EIC

• Center-of-mass energy: 20 - 140 GeV

► electrons: 2.5 - 18 GeV

▶ protons: 40- 275 GeV (ions: $Z/A \times E_p$)


• **Luminosity**: $10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

• **Polarization**: up to 70% (electron & ion)

ullet lon species: p o U

Detectors:

full coverage: 2fixed target: 0

EIC vs HERA

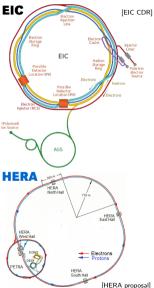
Machine parameters

• Center-of-mass energy: 20 - 140 (218) GeV

► electrons: 2.5 - 18 (27.5) GeV

▶ protons: 40- 275 (920) GeV (ions: $Z/A \times E_p$)

• Luminosity: 10^{34} (10^{31}) cm⁻² s⁻¹


• **Polarization**: up to 70% (electron & ion) (only electron)

• Ion species: $p \to U$ (A > 1 only in fixed target)

Detectors:

► full coverage: 2 (2)

► fixed target: 0 (2 - limited far-forward coverage)

EIC vs HERA

Machine parameters

• Center-of-mass energy: 20 - 140 (218) GeV

► electrons: 2.5 - 18 (27.5) GeV

▶ protons: 40- 275 (920) GeV (ions: $Z/A \times E_p$)

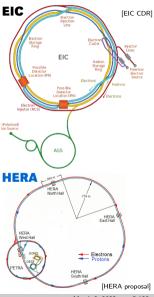
• Luminosity: 10^{34} (10^{31}) cm⁻² s⁻¹

• **Polarization**: up to 70% (electron & ion) (only electron)

• Ion species: $p \to U$ (A > 1 only in fixed target)

Detectors:

► full coverage: 2 (2)

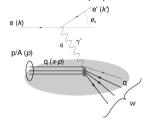

► fixed target: 0 (2 - limited far-forward coverage)

EIC will have:

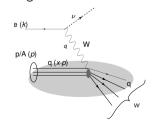
lower energy + Hadron polarization

• broader energy range + Nuclear beams

higher luminisity + Modern detector(s)



How to access partons @ EIC

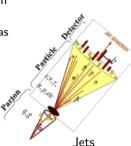


6/23

Neutral current (SI)DIS

Charged current DIS

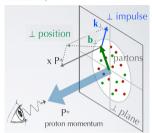
Neutral current (SI)DIS

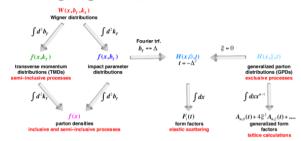

- Detect scattered lepton (DIS) in coincidence with identified hadrons (SIDIS)
 - ▶ measure correlation between different hadrons as fct. of p_T , z, η
 - ► needs FF to correlate hadron type with parton

Charged current DIS - W-exchange

 direct access to the quark flavor no FF – complementary to SIDIS

Jets


- best observable to access parton kinematics
- tag partons through the sub-processes and jet substructure
 - ▶ di-jets: relative p_T → correlated to k_T
 - ► tag on PDF


2+1 dimensional Imaging of Quarks & Gluons

Nuclear Femtography

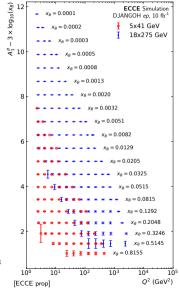
- Structure mapped in terms of: $b_{\text{T}} = \text{transverse position}$ $k_{\text{T}} = \text{transverse momentum}$
- use different processes to access different aspects of distribution functions

- PDFs: (SI)DIS cross sections
- **GPDs**: Deep Exclusive Scattering (DES) cross sections like: deeply virtual Compton scattering (DVCS) $\gamma + p \rightarrow \gamma + p$ or production of a vector meson $\gamma + p \rightarrow V + p$ Spin-dependent 2+1D coordinate space images
- TMDs: SIDIS cross sections
 Spin-dependent 3D momentum space images

[EIC YR]

7/23

Nucleon Spin


DIANGOH en 10 fb-1

5x41 GeV

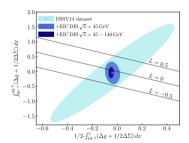
18x275 GeV

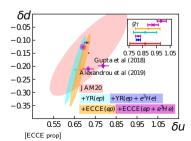
$$\frac{1}{2}\hbar = \left\langle P, \frac{1}{2} | J_{QCD}^z | P, \frac{1}{2} \right\rangle = \frac{1}{2} \int_0^1 \! dx \Delta \Sigma(x, Q^2) + \int_0^1 \! dx \Delta G(x, Q^2) + \int_0^1 \! dx (\sum_q L_q^z + L_g^z)$$

- quark contribution: integral of g_1 over x from 0 to 1
- gluon contribution: $dg_1(x, Q^2)/dlnQ^2 \rightarrow \Delta g(x, Q^2)$
- Measured through DIS cross section asymmetry in oppositely polarized collisions

 $x_0 = 0.0001$

 $x_0 = 0.0002$




Nucleon Spin

$$\frac{1}{2}\hbar = \left\langle P, \frac{1}{2} | J_{QCD}^z | P, \frac{1}{2} \right\rangle = \frac{1}{2} \int_0^1 \! dx \Delta \Sigma(x, Q^z) + \int_0^1 \! dx \Delta G(x, Q^z) + \int_0^1 \! dx (\sum_q \! L_q^z + L_g^z)$$

- quark contribution: integral of g_1 over x from 0 to 1
- gluon contribution: $dg_1(x,Q^2)/dlnQ^2 o \Delta g(x,Q^2)$
- Measured through DIS cross section asymmetry in oppositely polarized collisions
- Improved constraints on the spin of quarks/gluons
 ⇒ Constrain contribution of orbital angular momentum (OAM) of partons to proton spin
- Collisions with polarized deuterons/helium-3
 ⇒ Access to neutron spin

 $Q = Q_c$

log(Q)

 $\Lambda_{QC\Gamma}$

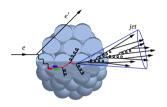
(GeV²)

Imaging the Nuclei

DGLAP

DGLAP

log(x)


 predicts Q² but not A-dependence and x-dependence

Saturation models

 predict A-dependence and x-dependence but not Q²

Need: large Q^2 lever-arm for fixed x, A-scan

- Measure different structure function in eA → constrain nPDF
- Does the nucleus behave like a proton at low-x?
- Direct Access to gluons at medium to high x by tagging photon-gluon fusion using charm events

10.4

BK/JIMWLK

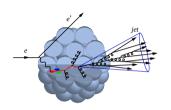
 $Q = Q_c$

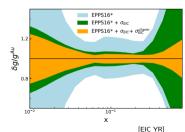
log(Q)

 Λ_{QCD}

(GeV²)

Imaging the Nuclei


 predicts Q² but not A-dependence and x-dependence


Saturation models

 predict A-dependence and x-dependence but not Q²

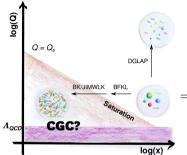
Need: large Q^2 lever-arm for fixed x, A-scan

- Measure different structure function in $eA \rightarrow constrain nPDF$
- Does the nucleus behave like a proton at low-x?
- Direct Access to gluons at medium to high x by tagging photon-gluon fusion using charm events

BK/JIMWLK

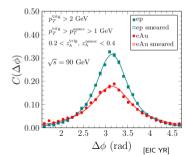
DIS (CCFR, CDHSW, CHORUS, NuTeV

10.4


DGLAP

log(x)

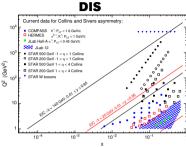
Color Glass Condensate?

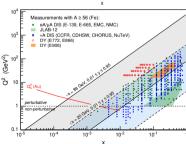


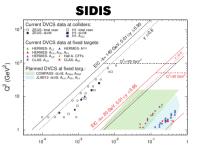
- e interacts over distances $L \sim (2mNx)^{-1}$
- For $L>2R_A\sim A^{1/3}$ probe cannot distinguish between nucleons in front or back
- Probe interacts coherently with all nucleons
- \Rightarrow Enhancement of Q_s with $A \to {\sf non-linear}$ QCD regime reached at significantly lower energy in A than in proton

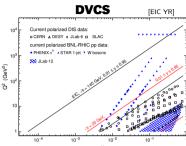
Di-Hadron or Di-Jet Correlations

- Low p/A gluon n density (ep): pQCD $2 \rightarrow 2$ process predicts \Rightarrow back-to-back di-jet
- High gluon density (eA): 2 → many process
 ⇒ expect broadening of away-side
- EIC allows to study the evolution of Q_s with x

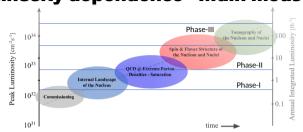





Kinematic Coverage



11 / 23


Accelerator gives access to extensive kinematic range

 \Rightarrow Now we need a detector to match

Luminosity dependence - Main measurements

design luminosity:

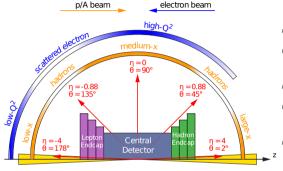
$$\label{eq:local_local_local} \begin{split} \mathsf{L} &= 10^{34}~\mathsf{cm}^{-2}~\mathsf{s}^{-1} \\ &\int \mathsf{Ldt} = 100~\mathsf{fb}^{-1}~\mathsf{per}~\mathsf{year} \end{split}$$

$\int \mathsf{L} \mathsf{d} \mathsf{t}$ **1 fb** $^{-1}$

$f 10~fb^{-1}$ semi-inclusive DIS

10-100 ${ m fb}^{-1}$ Exclusive processes

- measure scattered electron
- ightarrow precision EM-Calorimetery
- multi-dimensional binning: $x \cdot O^2$
- → maximize x, Q² coverage & determines interaction region design


- measure scattered electron in coincidence with identified hadrons
- multi-dimensional binning: x, Q^2 , z, θ , p_T
- ightarrow maximize PID detector coverage in whole phase space

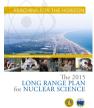
- measure all particles in event
- \rightarrow hermetic tracking + hadronic calorimetry
- multi-dimensional binning: x, Q^2 , z, θ , p_T
- measure proton kinematics
- → strong constraints on far-forward detector & interaction region



Generalized detector design considerations

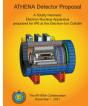
- Large rapidity coverage for central detector
- Specialized far-forward detectors for p kinematics measurements
- High precision low mass tracking
- Hermetic coverage of tracking, electromagnetic
 hadronic calorimetry
- High performance single track PID for π , K, p seperation
- Large acceptance for diffraction, tagging, neutrons from nuclear breakup many auxillary detectors integrated in beam line: low- Q^2 tagger, Roman pots. ZDCs . . .
- High control if systematics
 luminisity monitors, electron & hadron polarimetry

13 / 23


The detector design process

2020

Define physics objectives & generic machine/detector parameters

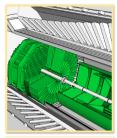


- Detector & machine design driven by physics objectives
- NSAC recommendation: " ... a high-energy high-luminosity polarized EIC ... highest priority for new facility construction '
- Jan. 2020: BNL site selection.
- Extensive generic detector R&D for EIC for PID, tracking & calorimetry
- YR outlines general detector requirements for benchmark physics observables
- Mar. 2021: Call for Detector **Proposals**
- Detector proposal based on more realistic full detector simulations

2012 2015 2017 Realistic machine & detector concepts

Feb. 2021

EIC Commobanaire Chromodynamics Experimen


Dec. 2012

FIC physics

ECCE

Backward Endcap

Tracking:

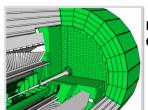
 ITS3 MAPS Si discs (x4) AC-LGAD

DID: mRICH

- AC-LIGAD TOF
- PbWO₄ EM Calorimeter

Barrel

Tracking:


- ITS3 MAPS Si (vertex x3; sagitta x2)
- uRWell outer laver (x2)
- AC-LGAD (before hpDIRC)
- uRWell (after hpDIRC)

h-PID: AC-LIGAD TOF

- hpDIRC
- Electron ID:

SciGlass EM Cal (BEMC)

- Hadron calorimetry: Outer Fe/Sc Calorimeter
 - (oHCAL) Instrumented frame (iHCAL)

Forward Endcap

Tracking:

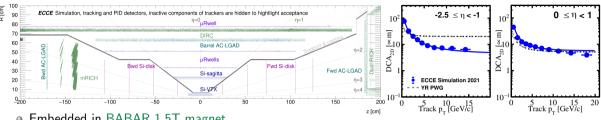
ITS3 MAPS Si discs (x5)

AC-LGAD

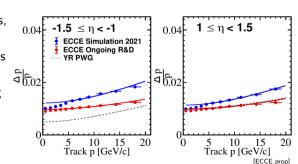
- DID: dRICH
- AC-LGAD TOF
- Calorimetry:

- Pb/ScFi shashlik (FEMC)
- Longitudinally separated hadronic calorimeter (LHFCAL)

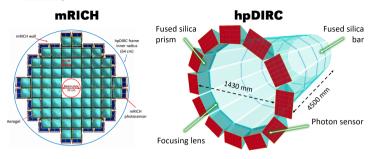
EIC Comprehensive Chromodynamics Experiment

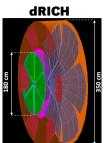

- Scientiest from 98 international & US based institutions
- Objective:
 - "Produce a purpose-built detector, designed to optimally deliver the full EIC science program by carefully balancing technology choices, costs and risk"
- Physics driven detector design choices with strong connection to YR
- Effective use of funds with minimized risks

[ECCE prop]



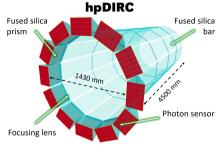
Tracking

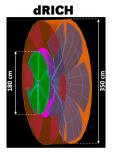

- Embedded in BABAR 1.5T magnet
- Mid-rapidity: Ultra thin MAPS based Si-detectors. μ Rwells & AC-LGAD detectors
- Forward and Backward: MAPS based Silicon discs. & AC-LGAD detectors
- Al-Assisted optimization of placement of tracking lavers & support reduction
- Outer layers placed to provide ideal track points before/after PID detectors

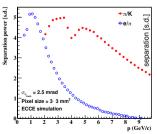


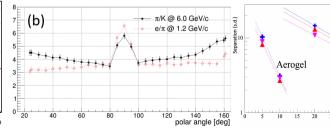
Cherenkov-PID

- Optimized for charged pion, kaon & proton separation
- Complemented by calorimetery & TOF
- Geometries optimized to fit ECCE baseline design while maintaining required performance
- Particular focus on large η coverage


[ECCE prop]




Cherenkov-PID

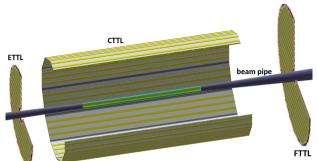


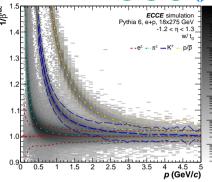
Momentum (GeV/c)

Incidence Angles

▲ 20 dea

 15 deg

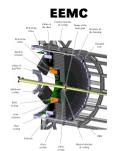

 ▼ 5 deg


Gas

Time of flight (TOF)

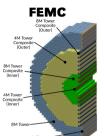
- Analog Coupled Low Gain Avalanche Detectors (AC-LGADs) with 25 ps time resolution resolution
- Combined PID & tracking detector
- Positions optimized for low momentum e/π , π/K , K/p separation
- Full η -coverage for simultaneous start time determination

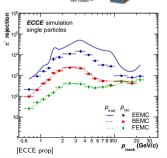
PID	ETTL	CTTL	FTTL
e/π	< 0.5	< 0.45	< 0.6
π/K	< 2.1	< 1.3	< 2.2
K/v	< 3.3	< 2.2	< 3.7


[ECCE prop]

March 3, 2022

Electromagnetic Calorimetery




BEMC BEMC BEMC FEMC

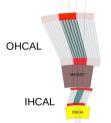
*Based on prototype beam tests and earlier experiments

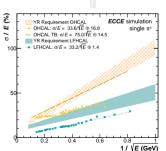
[1.3..4]

- **EEMC** homogenous high resolution PbWO₄ crystal ECal
- **BEMC** homogenous, projective Sci-Glass ECal
- **FEMC** high granular shashlik Pb/Scint sampling ECal, integrated within module LFHCAL
- Minimized acceptance gaps
- EEMC/BEMC optimized for scattered electron detection
- FEMC optimized for shower separation within jets

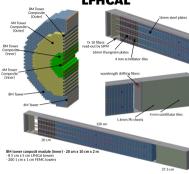
Hadronic Calorimetery

 Designed to complement tracking in Particle-Flow algorithm


OHCAL/IHCAL


- ► Fe/Scint sampling calorimeter
- ► partial sPHENIX re-use & magnet flux return

LFHCAL

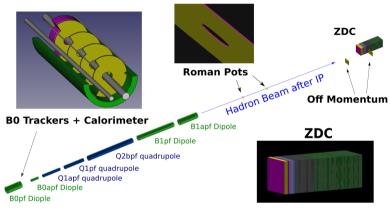

- ► Fe/Scint & W/Scint sampling calorimeter
- ▶ highly segmented (7 long. segments) & integrated with FEMC for support material reduction
- W-segment as tail catcher
- No electron end-cap HCAL, no strong enough physics motivation

OHCAL+IHCAL

LFHCAL

	Barrel HCal	LFHCAL		
η	[-1 1]	[14]		
$\sigma_{\rm E}/{\rm E}$	~75%/√E + 15%*	~33%/√E + 1.4%		
depth	~4-5 λ _I	~7-8 λ ₁		

*Based on prototype beam tests and earlier experiments


[ECCE prop]

20 / 23

Far-forward Region

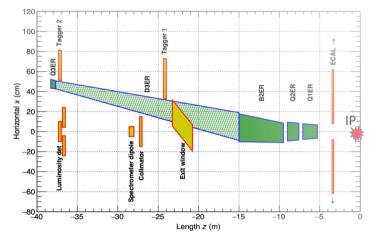
Detector	(x,z) Position [m]	Dimensions	θ [mrad]	Notes @
ZDC	(-0.96, 37.5)	(60cm, 60cm, 1.62m)	$\theta < 5.5$	\sim 4.0 mrad at $\phi=\pi$
Roman Pots (2 stations)	(-0.83, 26.0) (-0.92, 28.0)	(30cm, 10cm)	$0.0 < \theta < 5.5$	10σ cut.
Off-Momentum Detector	(-1.62, 34.5), (-1.71, 36.5)	(50cm, 35cm)	$0.0 < \theta < 5.0$	$0.4 < x_L < 0.6$
B0 Trackers and Calorimeter	(x = -0.15, 5.8 < z < 7.0)	(32cm, 38m)	$6.0 < \theta < 22.5$	\sim 20 mrad at ϕ =0

 B0 system for charged-particle measurement in forward direction & neutral-particle tagging

off-momentum detectors
 measure charged particles with
 different rigidity than the
 beam, e.g., those following
 decay and fission.

 roman pot detectors charged particles measurement close to beam envelope

 zero-degree calorimeter measures neutral particles at small angles.

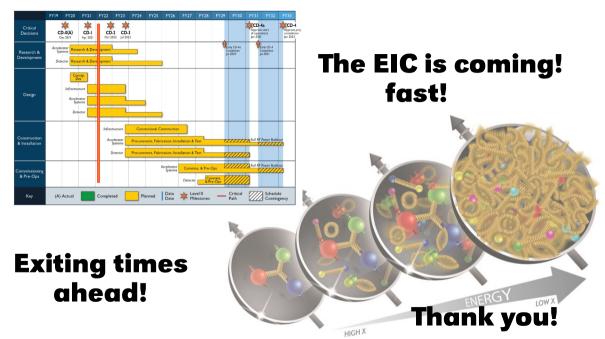

[ECCE prop]

F. Bock (ORNL) EIC physics March 3, 2022 21/23

Far-backward Region

- This area is designed to measure scattered electrons at small, far-backward angles
- Strong technology synergies with central detector systems

Low Q2-tagger


- ▶ Double-layer AC-LGAD tracker at 24 & 37m from IP
- ► PbWO4 EMCAL (20cm x 2cm2 crystals)

Luminosity Monitor

► AC-LGAD and PbWO4 to provide accuracy of the order of 1% or relative luminosity determination exceeding 10⁻⁴ precision

[EIC YR] [ECCE prop]

F. Bock (ORNL) EIC physics March 3, 2022 22/23

