Hard probe path lengths and event-shape engineering of the quark-gluon plasma

Govert Nijs

March 4, 2022

Based on:
■ Beattie, GN, Sas, van der Schee, 2203.xxxxx

Motivation

- Hard probes lose energy while traversing the QGP.
- Energy loss depends on path length.
- Can we make this cartoon a bit more quantitative?

Trajectum

■ New heavy ion code developed in Utrecht/MIT/CERN.

- Contains initial state, hydrodynamics and freeze-out, as well as an analysis suite.
- Easy to use, example parameter files distributed alongside the source code.
- Fast, fully parallelized.

■ Publicly available at sites.google.com/view/govertnijs/trajectum/
[GN, van der Schee, Gürsoy, Snellings, 2010.15130; 2010.15134] Institute of
Technology

Govert Nijs
Hard probe path lengths and event-shape engineering of the quark-gluon plasma

Parameters used: MAP values from Bayesian analysis

[GN, van der Schee, 2110.13153]

Govert Nijs

Hard probe path lengths and event-shape engineering of the quark-gluon plasma

Different path length measures

- $L_{\text {static }}$ is the distance from the probe origin to the freeze-out surface at $\tau=\tau_{\text {fs }}$.
- $L_{\text {dyn }}$ is the same distance, but measured along a lightlike path.
- $\int u_{\mu} d L^{\mu}$ takes the fluid velocity into account.

■ $\int T^{\alpha} / \gamma u_{\mu} d L^{\mu}$ also takes time dilation and hotspots into account.

- $\int T^{3} / \gamma u_{\mu} d L^{\mu}$ is what is expected up to $\mathcal{O}\left(v^{2}\right)$ assuming probes do not change direction.

Several different pathlength measures

- $L_{\text {dyn }}$ has a 'cliff' at $\tau \sim 11$ due to the lifetime of the QGP.
- Velocity- and temperature-dependent measures are considerably smaller.

Several different pathlength measures

- $L_{\text {dyn }}$ has a 'cliff' at $\tau \sim 11$ due to the lifetime of the QGP.
- Velocity- and temperature-dependent measures are considerably smaller.

Event shape engineering

- For each event, we compute $q_{2}=\left|\sum_{i=1}^{M} e^{2 i \varphi}\right| / \sqrt{M}$, which measures how elliptical the particle
 distribution is.

Event shape engineering

- For each event, we compute $q_{2}=\left|\sum_{i=1}^{M} e^{2 i \varphi}\right| / \sqrt{M}$, which measures how elliptical the particle distribution is.
- We then select the 10% lowest or highest q_{2} values in each centrality bin.

q_{n}

Event shape engineering

- For each event, we compute $q_{2}=\left|\sum_{i=1}^{M} e^{2 i \varphi}\right| / \sqrt{M}$, which measures how elliptical the particle distribution is.
- We then select the 10% lowest or highest q_{2} values in each centrality bin.
- q_{2} has a mild but important
 dependence on centrality: must use narrow centrality bins.

Soft observables

- High q_{2} leads to high $v_{2}\{2\}$ as expected.

■ ESE selected $v_{2}\{4\}$ and $v_{2}\{2\}$ are close together, indicating a narrow range of underlying v_{2}.
■ ESE selected $\left\langle p_{T}\right\rangle$ is in agreement with $\rho\left(v_{2}\{2\}^{2},\left\langle p_{T}\right\rangle\right)$.
■ ESE selected $v_{3}\{2\}$ shows a negative correlation between v_{2} and v_{3}, in agreement with $S C(3,2)<0$.

ESE selected path length

- Path length does not change when selecting on q_{2} alone.
$■$ Something else is needed.

In-plane vs. out-of-plane probes

- q_{2} can also be given a direction.
- We define probes with azimuthal angle difference $\Delta \varphi<22^{\circ}$ as being in-plane.
- Out-of-plane probes are defined analogously.

■ We expect the average path length to be shorter in-plane than out-of-plane. Technology

Govert Nijs
Hard probe path lengths and event-shape engineering of the quark-gluon plasma

Path length distributions

- Indeed path length is on average shorter in-plane than out-of-plane.
■ ESE can enlarge these differences when selecting the largest q_{2} values.
■ For central collisions, the smallest q_{2} remove differences almost completely.

Out-of-plane to in-plane average path length ratio

- ESE can increase the path length differences by a factor 2.
- Choosing the $\Delta \varphi$ limit to be 22° instead of 45° gains another factor 2, but decreasing to 11° yields little gain.
- Path length differences are larger for $\int T^{\alpha} / \gamma u_{\mu} d L^{\mu}$ than for $L_{\text {dyn }}$.

Back-to-back probes

■ We can also produce probes back-to-back.

- We then show the longest and shortest path of each pair separately.

Massachusetts

Adding ESE and in-/out-of-plane selection

- We show the average path length ratio of shortest over longest.
- Selecting in-plane pairs can decrease the ratio.
- Selecting elliptical events further decreases the ratio.

Conclusions and outlook

Conclusions:

- In-plane probes have a smaller average path length than out-of-plane probes.
■ Choosing a $\Delta \varphi$ limit of 22° gives a larger path length difference compared to 45°, by a factor of 2 .
■ Selecting high q_{2} events enhances this difference by a further factor of 2 .

■ In back-to-back probes event plane selections and event shape engineering can decrease the path length ratio between the pair.
Outlook:
■ Performing a full parton shower in Trajectum.

