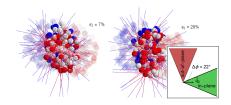
Hard probe path lengths and event-shape engineering of the quark-gluon plasma

Govert Nijs

March 4, 2022

Based on:

■ Beattie, GN, Sas, van der Schee, 2203.xxxxx



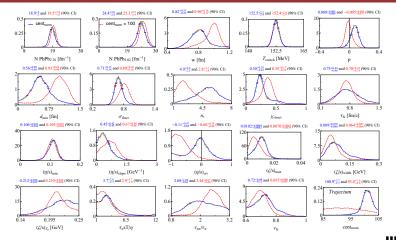
Motivation

Introduction

- Hard probes lose energy while traversing the QGP.
- Energy loss depends on path length.
- Can we make this cartoon a bit more quantitative?

Trajectum

Introduction


- New heavy ion code developed in Utrecht/MIT/CERN.
- Contains initial state, hydrodynamics and freeze-out, as well as an analysis suite.
- Easy to use, example parameter files distributed alongside the source code.
- Fast, fully parallelized.
- Publicly available at sites.google.com/view/govertnijs/trajectum/

[GN, van der Schee, Gürsoy, Snellings, 2010.15130; 2010.15134]

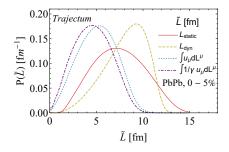
Parameters used: MAP values from Bayesian analysis

[GN, van der Schee, 2110.13153]

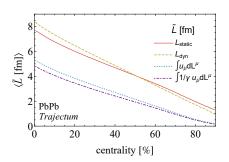
Introduction 000

Different path length measures

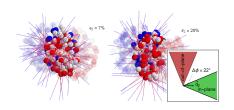
Path length


- L_{static} is the distance from the probe origin to the freeze-out surface at $\tau = \tau_{\text{fs}}$.
- \blacksquare L_{dyn} is the same distance, but measured along a lightlike path.
- $\int u_{\mu}dL^{\mu}$ takes the fluid velocity into account.
- $\int T^{\alpha}/\gamma u_{\mu} dL^{\mu}$ also takes time dilation and hotspots into account.
- $\int T^3/\gamma u_\mu dL^\mu$ is what is expected up to $\mathcal{O}(v^2)$ assuming probes do not change direction.

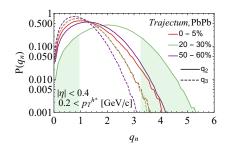
Several different pathlength measures


- $L_{\rm dyn}$ has a 'cliff' at $\tau \sim 11$ due to the lifetime of the QGP.
- Velocity- and temperature-dependent measures are considerably smaller.

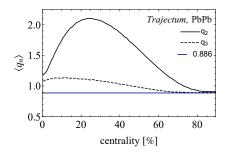
- $L_{\rm dyn}$ has a 'cliff' at $au \sim 11$ due to the lifetime of the QGP.
- Velocity- and temperature-dependent measures are considerably smaller.



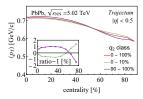
Event shape engineering

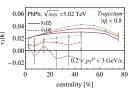

For each event, we compute $q_2 = \left|\sum_{i=1}^{M} e^{2i\varphi}\right| / \sqrt{M}$, which measures how elliptical the particle distribution is

- For each event, we compute $q_2 = \left| \sum_{i=1}^M e^{2i\varphi} \right| / \sqrt{M},$ which measures how elliptical the particle distribution is.
- We then select the 10% lowest or highest q2 values in each centrality bin.

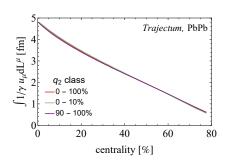


Event shape engineering


- For each event, we compute $q_2 = \left| \sum_{i=1}^M e^{2i\varphi} \right| / \sqrt{M},$ which measures how elliptical the particle distribution is.
- We then select the 10% lowest or highest q_2 values in each centrality bin.
- q₂ has a mild but important dependence on centrality: must use narrow centrality bins.

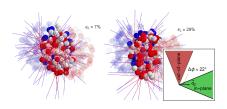


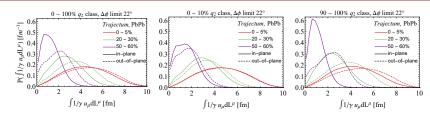
Soft observables

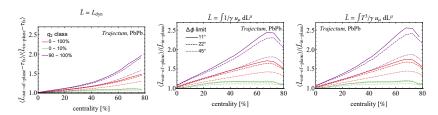


- High q_2 leads to high $v_2\{2\}$ as expected.
- ESE selected v_2 {4} and v_2 {2} are close together, indicating a narrow range of underlying v_2 .
- ESE selected $\langle p_T \rangle$ is in agreement with $\rho(v_2\{2\}^2, \langle p_T \rangle)$.
- ESE selected $v_3\{2\}$ shows a negative correlation between v_2 and v_3 , in agreement with SC(3,2) < 0.

ESE selected path length

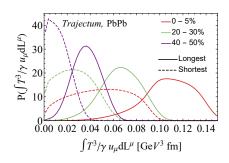

- Path length does not change when selecting on q_2 alone.
- Something else is needed.


- q₂ can also be given a direction
- We define probes with azimuthal angle difference $\Delta \varphi < 22^{\circ}$ as being in-plane.
- Out-of-plane probes are defined analogously.
- We expect the average path length to be shorter in-plane than out-of-plane.


Path length distributions

- Indeed path length is on average shorter in-plane than out-of-plane.
- ESE can enlarge these differences when selecting the largest q_2 values.
- For central collisions, the smallest q_2 remove differences almost completely.

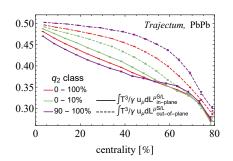
Out-of-plane to in-plane average path length ratio



- ESE can increase the path length differences by a factor 2.
- Choosing the $\Delta \varphi$ limit to be 22° instead of 45° gains another factor 2, but decreasing to 11° yields little gain.
- Path length differences are larger for $\int T^{\alpha}/\gamma u_{\mu}dL^{\mu}$ than for $L_{\rm dyn}$.

Back-to-back probes

- We can also produce probes back-to-back.
- We then show the longest and shortest path of each pair separately.


Back-to-back probes

Adding ESE and in-/out-of-plane selection

- We show the average path length ratio of shortest over longest.
- Selecting in-plane pairs can decrease the ratio.
- Selecting elliptical events further decreases the ratio.

Conclusions and outlook

Conclusions:

- In-plane probes have a smaller average path length than out-of-plane probes.
- Choosing a $\Delta \varphi$ limit of 22° gives a larger path length difference compared to 45°, by a factor of 2.
- Selecting high q_2 events enhances this difference by a further factor of 2.
- In back-to-back probes event plane selections and event shape engineering can decrease the path length ratio between the pair.

Outlook:

■ Performing a full parton shower in *Trajectum*.

