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Motivation

Hard probes lose energy
while traversing the QGP.

Energy loss depends on path
length.

Can we make this cartoon a
bit more quantitative?
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Trajectum

New heavy ion code developed in Utrecht/MIT/CERN.

Contains initial state, hydrodynamics and freeze-out, as well
as an analysis suite.

Easy to use, example parameter files distributed alongside the
source code.

Fast, fully parallelized.

Publicly available at
sites.google.com/view/govertnijs/trajectum/

[GN, van der Schee, Gürsoy, Snellings, 2010.15130; 2010.15134]
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Parameters used: MAP values from Bayesian analysis
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[GN, van der Schee, 2110.13153]
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Different path length measures

Lstatic is the distance from the probe origin to the freeze-out
surface at τ = τfs.

Ldyn is the same distance, but measured along a lightlike path.∫
uµdL

µ takes the fluid velocity into account.∫
Tα/γuµdL

µ also takes time dilation and hotspots into
account.∫
T 3/γuµdL

µ is what is expected up to O(v2) assuming
probes do not change direction.
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Several different pathlength measures

Ldyn has a ‘cliff’ at τ ∼ 11
due to the lifetime of the
QGP.

Velocity- and
temperature-dependent
measures are considerably
smaller.
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Several different pathlength measures

Ldyn has a ‘cliff’ at τ ∼ 11
due to the lifetime of the
QGP.

Velocity- and
temperature-dependent
measures are considerably
smaller.
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Event shape engineering

For each event, we compute

q2 =
∣∣∣∑M

i=1 e
2iϕ
∣∣∣ /√M,

which measures how
elliptical the particle
distribution is.
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Event shape engineering

For each event, we compute

q2 =
∣∣∣∑M

i=1 e
2iϕ
∣∣∣ /√M,

which measures how
elliptical the particle
distribution is.

We then select the 10%
lowest or highest q2 values
in each centrality bin.
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Event shape engineering

For each event, we compute

q2 =
∣∣∣∑M

i=1 e
2iϕ
∣∣∣ /√M,

which measures how
elliptical the particle
distribution is.

We then select the 10%
lowest or highest q2 values
in each centrality bin.

q2 has a mild but important
dependence on centrality:
must use narrow centrality
bins.
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Soft observables

PbPb, sNN =5.02 TeV Trajectum
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High q2 leads to high v2{2} as expected.

ESE selected v2{4} and v2{2} are close together, indicating a
narrow range of underlying v2.

ESE selected 〈pT 〉 is in agreement with ρ(v2{2}2, 〈pT 〉).

ESE selected v3{2} shows a negative correlation between v2
and v3, in agreement with SC (3, 2) < 0.
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ESE selected path length

Path length does not change
when selecting on q2 alone.

Something else is needed.
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In-plane vs. out-of-plane probes

q2 can also be given a
direction.

We define probes with
azimuthal angle difference
∆ϕ < 22◦ as being in-plane.

Out-of-plane probes are
defined analogously.

We expect the average path
length to be shorter in-plane
than out-of-plane.
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Path length distributions
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Indeed path length is on average shorter in-plane than
out-of-plane.

ESE can enlarge these differences when selecting the largest
q2 values.

For central collisions, the smallest q2 remove differences
almost completely.
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Out-of-plane to in-plane average path length ratio
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ESE can increase the path length differences by a factor 2.

Choosing the ∆ϕ limit to be 22◦ instead of 45◦ gains another
factor 2, but decreasing to 11◦ yields little gain.

Path length differences are larger for
∫
Tα/γuµdL

µ than for
Ldyn.
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Back-to-back probes

We can also produce probes
back-to-back.

We then show the longest
and shortest path of each
pair separately.
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Adding ESE and in-/out-of-plane selection

We show the average path
length ratio of shortest over
longest.

Selecting in-plane pairs can
decrease the ratio.

Selecting elliptical events
further decreases the ratio.
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Conclusions and outlook

Conclusions:

In-plane probes have a smaller average path length than
out-of-plane probes.

Choosing a ∆ϕ limit of 22◦ gives a larger path length
difference compared to 45◦, by a factor of 2.

Selecting high q2 events enhances this difference by a further
factor of 2.

In back-to-back probes event plane selections and event shape
engineering can decrease the path length ratio between the
pair.

Outlook:

Performing a full parton shower in Trajectum.
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