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Outline

• Importance of nuclear thickness at lower energies
• Calculation of densities ε & n (nB, nS, nQ)

• Extractions of T & µ (µB, µS, µQ)

• Collision trajectory in the T-µB diagram
• Conclusions

Based on 
ZWL, Phys. Rev. C 98, 034908 (2018)
Todd Mendenhall & ZWL, Phys. Rev. C 103, 024907 (2021)
Todd Mendenhall & ZWL, arXiv:2111.13932
Han-Sheng Wang, Guo-Liang Ma, ZWL & Wei-Jie Fu, arXiv:2102.06937v2
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• For lower energies such as BES/FAIR, 
particular interests are in high baryon 
density physics including the QCD 
critical end point (CEP).

• Before addressing effects of CEP, we 
need to know the collision trajectory 
in the QCD phase diagram, 
including time evolutions of
energy density ε & net-baryon density nB  
(or T & µB)

• The Bjorken energy density formula
provides a semi-analytical method:

from STAR arXiv:1007.2613

Importance of nuclear thickness at lower energies
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For central Au+Au collisions:

→ the Bjorken formula

is only valid when dt <<  τF
or for τF= 0.5 fm/c𝑠"" > ~50 GeV

The nuclear crossing time is

for central A+A collisions in CM frame.
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Importance of nuclear thickness at lower energies
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A schematic picture:
the shaded area 
is the primary collision region
that can contribute to ε(t),
after considering formation time
tF = τF cosh(y).

At late t (> dt+τF),
ε(t) comes from the full primary 
collision region (the big diamond area).

K. Kajantie et al. / Hydrodynamics of hadronic matter 161 

densities attained. Still the hadron production time even in the TFR is shorter than 
the hydrodynamic evolution time R Afm, as long as A I/3 >> 1. 

The pairwise character of the interactions between the N^ nucleons in each 
one-dimensional nucleus (figs. 2-3, 5) is an essential feature of the inside-outside 
cascade model as formulated in sect. 2: after the two first nucleons have collided at 
t = x = 0 (fig. 5) they turn to a collection of pointlike quarks and gluons with a small 
probability of interacting when crossing the remaining nucleons. This pattern is 
repeated as many (--NA) times as there are nucleons in the one-dimensional 
(sections of) nuclei being discussed. With N Acc A 1/3 this leads to a central region 
pion rapidity density scaling as p~,A(y)ccA (A 2/3 comes from the transverse 
dimensions). 

Any interactions between the fragments and the nucleons would lead to a transfer 
of energy from the fragmentation regions to the central region and to an increase of 
the central rapidity density. Each crossing contributing equally would give another 
factor N A and O~A(Y) ~ -44/3. Equivalently, one might say that the nucleons are not 
Lorentz-contracted as in fig. 5 but that the slow-parton part of their wave function 
retains the width 1/AQc D - 1 fm. All slow-parton parts could then possibly interact 
with each other with the result O~A(Y) eC A4/3. Models with this property have been 
explicitly constructed [27]. If this really happened, the chances of attaining the 
quark-gluon plasma phase in the CR would correspondingly improve. We shall later 
include even this possibility in the numerical calculations. Note that already energy- 
momentum conservation restricts the increase of Og.A(Y) in the fragmentation 
regions to being proportional to A. 

Return now to fig. 2. For ~" < 1 the system is in a complicated nonthermal state of 
quarks and gluons with certain expectation values ~T~) and ~J~) which do not 
concern us. At • -- 1 hadrons start materializing and interacting. As in [4, 5] we shall 
assume that the hadronized part of the system immediately thermalizes with an 

~, \ \ x. 

\ x ~ N 

X \ ~" \ 
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Fig. 5. An alternative description of the A + A collision. In addition to the paitwise N + N collisions on 
the time axis (crosses), the secondaries may further interact with the incoming nucleons (circles). This 

would enhance the energy density in the central region. 

Kajantie et al. 
NPB (1983)

To do the semi-analytical study, 
we only consider central region (hs ~0) 
of central A+A collisions (Au+Au in this talk)
& neglect secondary scatterings 
or transverse expansion.

x: production time, ∈ [0, dt]

Extension of Bjorken ε formula with nuclear thickness

Mendenhall & ZWL, PRC (2021)
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We first use the simpler method 1) 
to illustrate the qualitative effect of 
nuclear thickness on ε(t)

(energy density at mid-pseudorapidity 
averaged over the transverse area)

2) With both finite t & z Without finite t or z:
the Bjorken ε formula 

1) With finite t 
(but not finite z-width)

Bjorken, PRD (1983) ZWL, PRC (2018)

Extension of Bjorken ε formula with nuclear thickness

Mendenhall & ZWL, 
PRC (2021)
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For the simplest uniform time profile:
initial energy (at hs~𝑦$~0) 
is produced uniformly 
in time x from t1 to t2 :
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Circles: AMPT results

Extension of Bjorken ε formula with nuclear thickness: 1)

1) With finite t 
(but not finite z-width)

ZWL, PRC (2018)
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2

pseudo-rapidity) needs to satisfy

| tanh y| ⇡ |y| 
d

t� x

at y ⇠ 0. Note that the right-hand-side above can al-
ways be made small with small-enough d. Therefore the
average energy density in this region at time t is

E

2dAT

=
1

AT

Z dt

0

d2ET

dy dx

dx

(t� x)
.

From now on we shall study the formed energy density
by assuming a finite formation time ⌧F for the produced
particles. A similar analysis gives the following average
formed energy density at any time t � ⌧F as

✏(t) =
1

AT

Z t�⌧
F

0

d2ET

dy dx

dx

(t� x)
.

As in the Bjorken formula, ✏(t < ⌧F) = 0. However, an
important feature of the above formula is that it applies
to early times when the two nuclei are still crossing each
other (i.e. t  dt + ⌧F). To proceed further, we will
next take specific forms for the time profile of the initial
energy production d2ET/dy/dx.

III. Results. For simplicity, we first assume that the
initial energy is produced uniformly from time t1 to t2
(with t21 ⌘ t2 � t1):

d2ET

dy dx
=

1

t21

dET

dy
, if x 2 [t1, t2].

Note that we only need the above assumption to apply
at y ⇠ 0. Also, we have not related t1 and t2 to dt for
the sake of generality. An illustration of this time profile
is shown as the dashed curve in Fig. 2. Equation (1)
then gives the following solution for the formed energy
density:

✏uni(t) =
1

ATt21

dET

dy
ln

✓
t� t1
⌧F

◆
, if t 2 [t1 + ⌧F , t2 + ⌧F ];

=
1

ATt21

dET

dy
ln

✓
t� t1
t� t2

◆
, if t � t2 + ⌧F .

One can easily verify that, for t1 = 0 and t2/⌧F ! 0, this
solution reduces to the Bjorken formula of Eq.(1).

FIG. 2: Time profiles for the initial energy production at mid-
rapidity: a uniform profile (dashed curve), beta profiles with
integer powers n = 1 to 5 (solid curves), and a triangular pro-
file (dot-dashed). Circles represent the time profile of partons
within mid-spacetime-rapidity from the string melting AMPT
model for central Au+Au collisions at

p
sNN = 11.5 GeV.

Qualitatively, this energy density starts from 0 at time
t1 + ⌧F , grows smoothly to the following maximum value
✏max at time t2 + ⌧F , and then decreases abruptly after
the energy production stops:

✏max
uni = ✏uni(t2 + ⌧F) =

1

ATt21

dET

dy
ln

✓
1 +

t21
⌧F

◆
.

Compared to the maximum energy density ✏Bj(⌧F) given
by the Bjorken formula, we have

✏max
uni

✏Bj(⌧F)
=

⌧F
t21

ln

✓
1 +

t21
⌧F

◆
.

Therefore the ✏max value above is always smaller than
the Bjorken initial energy density: ✏max

⌧ ✏Bj(⌧F) at
low energies where ⌧F/t21 is small, while at high energies
✏max

⇡ ✏Bj(⌧F). Furthermore, as ⌧F/t21 ! 0, the peak
energy density ✏max grows as ln(1/⌧F), much slower than
the 1/⌧F growth of the Bjorken formula. This means
that, after taking into account the finite crossing time,
the maximum energy density achieved will be much less
sensitive to the uncertainty of ⌧F , especially at lower en-
ergies where t21 ⇠ O(dt) is bigger. In addition, Eq.(1)
shows that the initial energy density at time later than
t2 + ⌧F is independent of ⌧F . We shall see that these fea-
tures are general and also apply to the other time profiles.
Due to the typical spherical shape of a nucleus, there

will be few primary nucleon-nucleon interactions when
the two nuclei barely touch or almost pass each other,
while there will be many such interactions when the two
nuclei fully overlap (around time dt/2). We thus expect
the time profile of the initial energy production to peak
around time dt/2 while diminish at time 0 and dt. There-
fore we can choose the following time profile based on the
probability density function of the beta distribution with
equal shape parameters:

d2ET

dy dx
= an [x(dt � x)]n

dET

dy
, if x 2 [0, dt].

In the above, power n does not need to be an integer, and
an = 1/d2n+1

t /B(n+1, n+1) is the normalization factor
with B(↵,�) being the Beta function. This smooth beta
profile reduces to a uniform profile when n = 0; with an
appropriate value of n it can also well describe the trans-
port model time profile, as shown in Fig. 2. We obtain
the following solution for the formed energy density:

✏beta(t) =
1

AT

dET

dy

[(t� ⌧F)/dt]
n+1

(n+ 1)B(n+ 1, n+ 1) t

⇤F1


n+ 1,�n, 1, n+ 2,

t� ⌧F
dt

,
t� ⌧F

t

�
,

if t 2 [⌧F , dt + ⌧F ];

=
1

AT

dET

dy

1

t
⇤2F1


1, n+ 1, 2n+ 2,

dt
t

�
,

if t � dt + ⌧F .

F1 above is the Appell hypergeometric function of two
variables, and 2F1 is the Gaussian hypergeometric func-
tion. One can verify that for n = 0 the above solution
reduces to Eq.(1) for t1 = 0 & t2 = dt.
We now apply these solutions to central Au+Au colli-

sions. The nuclear transverse area is taken as

AT = ⇡R2
A, with RA = 1.12A1/3 fm,

• At high energies
(thin nuclei, or t21 /τF → 0):

𝜀!"#(𝑡) → 𝜀$%(𝑡)
analytically.

• At lower energies:
very different from Bjorken.

→ solution:

time

eUniform

t1+τF t2+τF

Bjorken formula

εuni(t)

Central Au+Au@11.5GeV𝜀(𝑡)

𝑡

Extension of Bjorken ε formula with nuclear thickness: 1)

t21 ≡ t2 − t1
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time

eUniform At very low energies (t21 /τF >>1):
ratio over Bjorken → 0;

So the peak energy density 
• << Bjorken value
• much less sensitive to τF

& 𝜀!"#&'( ∝ ln )
(!

,      not )
*!
.

2

pseudo-rapidity) needs to satisfy

| tanh y| ⇡ |y| 
d

t� x

at y ⇠ 0. Note that the right-hand-side above can al-
ways be made small with small-enough d. Therefore the
average energy density in this region at time t is

E

2dAT

=
1

AT

Z dt

0

d2ET

dy dx

dx

(t� x)
.

From now on we shall study the formed energy density
by assuming a finite formation time ⌧F for the produced
particles. A similar analysis gives the following average
formed energy density at any time t � ⌧F as

✏(t) =
1

AT

Z t�⌧
F

0

d2ET

dy dx

dx

(t� x)
.

As in the Bjorken formula, ✏(t < ⌧F) = 0. However, an
important feature of the above formula is that it applies
to early times when the two nuclei are still crossing each
other (i.e. t  dt + ⌧F). To proceed further, we will
next take specific forms for the time profile of the initial
energy production d2ET/dy/dx.

III. Results. For simplicity, we first assume that the
initial energy is produced uniformly from time t1 to t2
(with t21 ⌘ t2 � t1):

d2ET

dy dx
=

1

t21

dET

dy
, if x 2 [t1, t2].

Note that we only need the above assumption to apply
at y ⇠ 0. Also, we have not related t1 and t2 to dt for
the sake of generality. An illustration of this time profile
is shown as the dashed curve in Fig. 2. Equation (1)
then gives the following solution for the formed energy
density:

✏uni(t) =
1

ATt21

dET

dy
ln

✓
t� t1
⌧F

◆
, if t 2 [t1 + ⌧F , t2 + ⌧F ];

=
1

ATt21

dET

dy
ln

✓
t� t1
t� t2

◆
, if t � t2 + ⌧F .

One can easily verify that, for t1 = 0 and t2/⌧F ! 0, this
solution reduces to the Bjorken formula of Eq.(1).

FIG. 2: Time profiles for the initial energy production at mid-
rapidity: a uniform profile (dashed curve), beta profiles with
integer powers n = 1 to 5 (solid curves), and a triangular pro-
file (dot-dashed). Circles represent the time profile of partons
within mid-spacetime-rapidity from the string melting AMPT
model for central Au+Au collisions at

p
sNN = 11.5 GeV.

Qualitatively, this energy density starts from 0 at time
t1 + ⌧F , grows smoothly to the following maximum value
✏max at time t2 + ⌧F , and then decreases abruptly after
the energy production stops:

✏max
uni = ✏uni(t2 + ⌧F) =

1

ATt21

dET

dy
ln

✓
1 +

t21
⌧F

◆
.

Compared to the maximum energy density ✏Bj(⌧F) given
by the Bjorken formula, we have

✏max
uni

✏Bj(⌧F)
=

⌧F
t21

ln

✓
1 +

t21
⌧F

◆
.

Therefore the ✏max value above is always smaller than
the Bjorken initial energy density: ✏max

⌧ ✏Bj(⌧F) at
low energies where ⌧F/t21 is small, while at high energies
✏max

⇡ ✏Bj(⌧F). Furthermore, as ⌧F/t21 ! 0, the peak
energy density ✏max grows as ln(1/⌧F), much slower than
the 1/⌧F growth of the Bjorken formula. This means
that, after taking into account the finite crossing time,
the maximum energy density achieved will be much less
sensitive to the uncertainty of ⌧F , especially at lower en-
ergies where t21 ⇠ O(dt) is bigger. In addition, Eq.(1)
shows that the initial energy density at time later than
t2 + ⌧F is independent of ⌧F . We shall see that these fea-
tures are general and also apply to the other time profiles.
Due to the typical spherical shape of a nucleus, there

will be few primary nucleon-nucleon interactions when
the two nuclei barely touch or almost pass each other,
while there will be many such interactions when the two
nuclei fully overlap (around time dt/2). We thus expect
the time profile of the initial energy production to peak
around time dt/2 while diminish at time 0 and dt. There-
fore we can choose the following time profile based on the
probability density function of the beta distribution with
equal shape parameters:

d2ET

dy dx
= an [x(dt � x)]n

dET

dy
, if x 2 [0, dt].

In the above, power n does not need to be an integer, and
an = 1/d2n+1

t /B(n+1, n+1) is the normalization factor
with B(↵,�) being the Beta function. This smooth beta
profile reduces to a uniform profile when n = 0; with an
appropriate value of n it can also well describe the trans-
port model time profile, as shown in Fig. 2. We obtain
the following solution for the formed energy density:

✏beta(t) =
1

AT

dET

dy

[(t� ⌧F)/dt]
n+1

(n+ 1)B(n+ 1, n+ 1) t

⇤F1


n+ 1,�n, 1, n+ 2,

t� ⌧F
dt

,
t� ⌧F

t

�
,

if t 2 [⌧F , dt + ⌧F ];

=
1

AT

dET

dy

1

t
⇤2F1


1, n+ 1, 2n+ 2,

dt
t

�
,

if t � dt + ⌧F .

F1 above is the Appell hypergeometric function of two
variables, and 2F1 is the Gaussian hypergeometric func-
tion. One can verify that for n = 0 the above solution
reduces to Eq.(1) for t1 = 0 & t2 = dt.
We now apply these solutions to central Au+Au colli-

sions. The nuclear transverse area is taken as

AT = ⇡R2
A, with RA = 1.12A1/3 fm,

𝜀!"#&'(

→ ratio over Bjorken: ≤ 1

2

z

t

time

0
d-d

x

dt

FIG. 1: Particles around zero rapidity could be produced at
any time x within [0, dt] and propagate to observation time t.

ways be made small with small-enough d. Therefore the
average energy density in this region at time t is

E

2dAT

=
1

AT

Z dt

0

d2ET

dy dx

dx

(t� x)
. (4)

From now on we shall study the formed energy density
by assuming a finite formation time ⌧F for the produced
particles. A similar analysis gives the following average
formed energy density at any time t � ⌧F as

✏(t) =
1

AT

Z t�⌧
F

0

d2ET

dy dx

dx

(t� x)
. (5)

As in the Bjorken formula, ✏(t < ⌧F) = 0. However, an
important feature of the above formula is that it applies
to early times when the two nuclei are still crossing each
other (i.e. t  dt + ⌧F). To proceed further, we will
next take specific forms for the time profile of the initial
energy production d2ET/dy/dx.

III. Results. For simplicity, we first assume that the
initial energy is produced uniformly from time t1 to t2
(with t21 ⌘ t2 � t1):

d2ET

dy dx
=

1

t21

dET

dy
, if x 2 [t1, t2]. (6)

Note that we only need the above assumption to apply
at y ⇠ 0. Also, we have not related t1 and t2 to dt for
the sake of generality. An illustration of this time profile
is shown as the dashed curve in Fig. 2. Equation (5)
then gives the following solution for the formed energy
density:

✏uni(t) =
1

ATt21

dET

dy
ln

✓
t� t1
⌧F

◆
, if t 2 [t1 + ⌧F , t2 + ⌧F ];

=
1

ATt21

dET

dy
ln

✓
t� t1
t� t2

◆
, if t � t2 + ⌧F . (7)

One can easily verify that, for t1 = 0 and t2/⌧F ! 0, this
solution reduces to the Bjorken formula of Eq.(1).

FIG. 2: Time profiles for the initial energy production at mid-
rapidity: a uniform profile (dashed curve), beta profiles with
integer powers n = 1 to 5 (solid curves), and a triangular pro-
file (dot-dashed). Circles represent the time profile of partons
within mid-spacetime-rapidity from the string melting AMPT
model for central Au+Au collisions at

p
sNN = 11.5 GeV.

Qualitatively, this energy density starts from 0 at time
t1 + ⌧F , grows smoothly to the following maximum value
✏max at time t2 + ⌧F , and then decreases abruptly after
the energy production stops:

✏max
uni = ✏uni(t2 + ⌧F) =

1

ATt21

dET

dy
ln

✓
1 +

t21
⌧F

◆
. (8)

Compared to the maximum energy density ✏Bj(⌧F) given
by the Bjorken formula, we have

✏max
uni

✏Bj(⌧F)
=

⌧F
t21

ln

✓
1 +

t21
⌧F

◆
. (9)

Therefore the ✏max value above is always smaller than
the Bjorken initial energy density: ✏max

⌧ ✏Bj(⌧F) at
low energies where ⌧F/t21 is small, while at high energies
✏max

⇡ ✏Bj(⌧F). Furthermore, as ⌧F/t21 ! 0, the peak
energy density ✏max grows as ln(1/⌧F), much slower than
the 1/⌧F growth of the Bjorken formula. This means
that, after taking into account the finite crossing time,
the maximum energy density achieved will be much less
sensitive to the uncertainty of ⌧F , especially at lower en-
ergies where t21 ⇠ O(dt) is bigger. In addition, Eq.(7)
shows that the initial energy density at time later than
t2 + ⌧F is independent of ⌧F . We shall see that these fea-
tures are general and also apply to the other time profiles.
Due to the typical spherical shape of a nucleus, there

will be few primary nucleon-nucleon interactions when
the two nuclei barely touch or almost pass each other,
while there will be many such interactions when the two
nuclei fully overlap (around time dt/2). We thus expect
the time profile of the initial energy production to peak
around time dt/2 while diminish at time 0 and dt. There-
fore we can choose the following time profile based on the
probability density function of the beta distribution with
equal shape parameters:

d2ET

dy dx
= an [x(dt � x)]n

dET

dy
, if x 2 [0, dt]. (10)

Peak energy density

• FWHM width in t >> Bjorkent1+τF t2+τF

Bjorken formula

Central Au+Au@11.5GeV

𝑡

Extension of Bjorken ε formula with nuclear thickness: 1)

εuni(t)

𝜀(𝑡)
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———————

————————-

—————

2) With both finite t & z 

+"&#
+,$ +(+-

:        mT production density 

in the primary collision region,
assumed to be uniform in the x-z plane.

→ 𝜀(𝑡) = )
.#
∫∫ +(+-

/0(
+"&#

+,$ +(+-
𝑐ℎ3𝑦1

S

S: integration area (shaded),
has 2 or 3 pieces depending on t:

Extension of Bjorken ε formula with nuclear thickness: 2)

Mendenhall & ZWL, 
PRC (2021)
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• Qualitatively similar to earlier study (Triangular)   ZWL, PRC (2018)
𝜀)*+ << Bjorken value at low energies,   ≈Bjorken value at high energies;
𝜀)*+ & ε(t) depend on  τF more weakly than Bjorken at lower energies.

• 𝜀)*+ is finite at τF = 0 at any colliding energy (no divergence).

Extension of Bjorken ε formula with nuclear thickness: 2)

2) With both finite t & z 

Finite t&z 

Mendenhall & ZWL, 
PRC (2021)
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Calculation of Densities ε & n (nB, nS, nQ)
We extend the method to calculate conserved-charge (B,S,Q) densities:

𝑛,(𝑡) =
𝑍
𝐴
𝑛- 𝑡 , 𝑛. 𝑡 = 0

Mendenhall & ZWL, arXiv:2111.13932
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Extractions of  T & µ (µB, µS, µQ)

𝑛. 𝑡 = 0 → 𝜇- − 𝜇, − 3𝜇. = 0

→

If we consider QGP as non-interacting gluon+3-flavor massless quarks 
(quantum stats here):

used for extraction of T&µ
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Extractions of  T & µ (µB, µS, µQ)

ε & nB, nS, nQ
→ T & µB, µS, µQ

collision trajectory 
in 4-d T-µ space

T

B

Q

S
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if   𝑍 = /
&

→ 𝑛, 𝑡 =
𝑛- 𝑡
2

→ 𝜇, 𝑡 = 0

So 𝜇,~0 is a result of 

𝑍~ .
2

(valid for most nuclei)

Extracted 𝝁𝑸~𝟎

Extractions of  T & µ (µB, µS, µQ)

Under strangeness 
neutrality

𝑛. 𝑡 = 0:

B

Q

S

T
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Collision Trajectory in the T-µB Diagram

For central Au+Au collisions:

FRG crossover curve and CEP: from Functional Renormalization Group
Fu, Pawlowski & Rennecke, PRD (2020)

Mendenhall & ZWL, arXiv:2111.13932
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Collision Trajectory in the T-µB Diagram

Large effect of finite nuclear thickness on T-µB trajectory at lower energies

Mendenhall & ZWL, arXiv:2111.13932

Bjorken picture
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Collision Trajectory in the T-µB Diagram

τF affects T&µB peak values, but
not much the hadronization point.
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Collision Trajectory in the T-µB Diagram

𝜀partial1 given by

for QGP with quantum stats
(higher µB than Boltzmann);

for QGP with Boltzmann stats.

τF affects T&µB peak values, but
not much the hadronization point.
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Partial-1 solution
assumes 𝜇& = 0 & 𝜇' = 𝜇(/3
to simplify the problem

ε & nB, nS, nQ → T & µB, µS, µQ
to    ε & nB → T & µB :

Partial-2 solution:
neglects 𝜇" & 𝜇# terms in densities,
equivalent to assuming 
𝜇" = 0 & 𝜇# = 0:

This violates 𝝁𝑩 − 𝝁𝑸 − 𝟑𝝁𝑺 = 𝟎
(or strangeness neutrality)
and gives bad results on µB.

For QGP with quantum stats

Extractions of  T & µ (µB, µS, µQ)

See C. Ratti’s Tuesday talk
on 𝜇" & 𝜇# used in lattice QCD
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start time: time the trajectory first crosses the crossover curve
end time: time the trajectory crosses the crossover curve again

tQGP=(end time) - (start time)

tQGP at low energies 
is still big (~2-4 fm/c),

even shows a rise 
towards threshold energy.

These are also seen in 
AMPT model results:
Wang, Ma, ZWL & Fu, 
arXiv:2102.06937v2

Collision Trajectory in the T-µB Diagram: QGP Lifetime
Mendenhall & ZWL, arXiv:2111.13932
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Todd Mendenhall has written a web interface
to perform these calculations of ε(t) and T & µ (µB, µS, µQ)

• Link is also available via http://myweb.ecu.edu/linz/densities/
or bottom of the AMPT webpage  http://myweb.ecu.edu/linz/ampt

• Takes input from user:

Collision Trajectory in the T-µB Diagram: webpage

https://toddmmendenhall.pythonanywhere.com/
http://myweb.ecu.edu/linz/densities/
http://myweb.ecu.edu/linz/ampt
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Collision Trajectory in the T-µB Diagram: webpage
• Plots ε(t) & T-µB trajectory, user can download full data file
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Wang, Ma, ZWL & Fu, arXiv:2102.06937v2

Qualitatively the same
as semi-analytical results:
• 𝜇,~0 & 𝜇.~𝜇-/3
• Big effect of nuclear thickness 

at lower energies.

Collision Trajectory in the T-µB Diagram: from AMPT
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• We have developed a semi-analytical method to 
calculate densities ε & n from the initial/primary collisions;

the ε part = extension of the Bjorken ε formula
to lower energies by including the finite nuclear thickness.

• At low energies like the BES, finite nuclear thickness has big effects 
on ε & n and consequently on event trajectories.

• The method can be used to calculate collision trajectory
in the 4-dimensional T-µ (µB, µS, µQ) space including the T-µB plane;
a webpage is written to perform these calculations.

• Partial solution (𝜇,= 0 & 𝜇. = 𝜇-/3) satisfies strangeness neutrality
& simplifies the 4d problem to 2d:
ε & nB, nS, nQ↔ T & µB, µS, µQ to    ε & nB↔ T & µB

Conclusions


