Semi-analytical Method of Calculating Collision Trajectory in the QCD Phase Diagram

Zi-Wei Lin East Carolina University (ECU)

The 37th Winter Workshop on Nuclear Dynamics Puerto Vallarta, Mexico. March 4, 2022

Outline

- Importance of nuclear thickness at lower energies
- Calculation of densities $\varepsilon \& n (n_B, n_S, n_Q)$
- Extractions of T & $\mu(\mu_B, \mu_S, \mu_Q)$
- Collision trajectory in the $T-\mu_B$ diagram
- Conclusions

Based on ZWL, Phys. Rev. C 98, 034908 (2018) Todd Mendenhall & ZWL, Phys. Rev. C 103, 024907 (2021) Todd Mendenhall & ZWL, arXiv:2111.13932 Han-Sheng Wang, Guo-Liang Ma, ZWL & Wei-Jie Fu, arXiv:2102.06937v2

Importance of nuclear thickness at lower energies

- For lower energies such as BES/FAIR, particular interests are in high baryon density physics including the QCD critical end point (CEP).
- Before addressing effects of CEP, we need to know the collision trajectory in the QCD phase diagram, *including time evolutions of energy density* ε & net-baryon density n_B (or T & μ_B)
- The Bjorken energy density formula provides a semi-analytical method:

$$\epsilon(\tau) = \frac{1}{\tau A_T} \frac{dE_T(\tau)}{dy}$$

Importance of nuclear thickness at lower energies

Extension of Bjorken ϵ formula with nuclear thickness

A schematic picture:

the shaded area is the primary collision region that can contribute to $\varepsilon(t)$, after considering formation time $t_F = \tau_F \cosh(y)$.

At late t (> $d_t + \tau_F$), $\varepsilon(t)$ comes from the full primary collision region (*the big diamond area*).

To do the semi-analytical study, we only consider central region $(\eta_s \sim 0)$ of central A+A collisions (Au+Au in this talk) & neglect secondary scatterings or transverse expansion.

Fig. 5. An alternative description of the A + A collision. In addition to the pairwise N + N collisions on the time axis (crosses), the secondaries may further interact with the incoming nucleons (circles). This would enhance the energy density in the central region.

x: *production time*, $\in [0, d_t]$

Extension of Bjorken ε formula with nuclear thickness

as $d \rightarrow 0$

Without finite t or z: the Bjorken ε formula

Bjorken, PRD (1983)

1) With finite t (*but not finite z-width*)

ZWL, PRC (2018)

2) With both finite t & z

Mendenhall & ZWL, PRC (2021)

We first use the simpler method 1) to illustrate the qualitative effect of nuclear thickness on *E(t) (energy density at mid-pseudorapidity averaged over the transverse area)* Extension of Bjorken ε formula with nuclear thickness: 1)

$$\rightarrow \varepsilon(t) = \frac{1}{A_T} \int_0^{t-\tau_F} \frac{dx}{(t-x)} \frac{d^2 E_T}{dy_0 dx}$$

1) With finite t (*but not finite z-width*) ZWL, PRC (2018)

For the simplest uniform time profile:

initial energy (at $\eta_s \sim y_0 \sim 0$) is produced uniformly in time *x* from t_1 to t_2 :

$$\frac{d^2 E_T}{dy_0 dx} = \frac{1}{t_{21}} \frac{dE_T}{dy_0}$$

for $x \in [t_1, t_2]$

Circles: AMPT results

Extension of Bjorken ε formula with nuclear thickness: 1)

$$\rightarrow \text{ solution: } \epsilon_{\text{uni}}(t) = \frac{1}{A_{\text{T}}t_{21}} \frac{dE_{\text{T}}}{dy} \ln\left(\frac{t-t_1}{\tau_{\text{F}}}\right), \text{ if } t \in [t_1 + \tau_{\text{F}}, t_2 + \tau_{\text{F}}];$$
$$= \frac{1}{A_{\text{T}}t_{21}} \frac{dE_{\text{T}}}{dy} \ln\left(\frac{t-t_1}{t-t_2}\right), \text{ if } t \geq t_2 + \tau_{\text{F}}.$$

• At high energies (thin nuclei, or $t_{21}/\tau_F \rightarrow 0$): $\varepsilon_{uni}(t) \rightarrow \varepsilon_{Bj}(t)$ analytically.

• *At lower energies:* very different from Bjorken.

Extension of Bjorken ε formula with nuclear thickness: 1)

Peak energy density
$$\epsilon_{\text{uni}}^{max} = \epsilon_{\text{uni}}(t_2 + \tau_{\text{F}}) = \frac{1}{A_{\text{T}}t_{21}}\frac{dE_{\text{T}}}{dy}\ln\left(1 + \frac{t_{21}}{\tau_{\text{F}}}\right)$$

 \rightarrow ratio over Bjorken: $\frac{\epsilon_{\text{uni}}^{max}}{\epsilon_{\text{Bj}}(\tau_{\text{F}})} = \frac{\tau_{\text{F}}}{t_{21}}\ln\left(1 + \frac{t_{21}}{\tau_{\text{F}}}\right)$. ≤ 1

At very low energies $(t_{21}/\tau_F >> 1)$: ratio over Bjorken $\rightarrow 0$;

&
$$\varepsilon_{uni}^{max} \propto \ln\left(\frac{1}{\tau_F}\right)$$
, not $\frac{1}{\tau_F}$

So the peak energy density

- << Bjorken value
- much less sensitive to $\tau_{\rm F}$

• FWHM width in t >> Bjorken

Extension of Bjorken ε formula with nuclear thickness: 2)

$$\rightarrow \varepsilon(t) = \frac{1}{A_T} \int \int_{s} \frac{dxdz}{(t-x)} \frac{d^3m_T}{dy_0 \, dxdz} ch^3 y_0$$

S: integration area (*shaded*), *has 2 or 3 pieces depending on t*:

2) With both finite t & z

Mendenhall & ZWL, PRC (2021)

 $\frac{d^3m_T}{dy_0 \, dxdz}$:

 m_T production density

in the primary collision region, *assumed to be uniform in the x-z plane*.

Extension of Bjorken ε formula with nuclear thickness: 2)

Mendenhall & ZWL, PRC (2021)

- Qualitatively similar to earlier study (Triangular) ZWL, PRC (2018) $\varepsilon^{max} \ll B$ jorken value at low energies, $\approx B$ jorken value at high energies; $\varepsilon^{max} \& \varepsilon(t)$ depend on τ_F more weakly than B jorken at lower energies.
- ε^{max} is **finite** at $\tau_F = 0$ at any colliding energy (*no divergence*).

Calculation of Densities $\varepsilon \& n (n_B, n_S, n_Q)$

We extend the method to calculate conserved-charge (B,S,Q) densities:

Mendenhall & ZWL, arXiv:2111.13932

Extractions of T & μ (μ_B , μ_S , μ_Q)

If we consider QGP as non-interacting gluon+3-flavor massless quarks
(quantum stats here):

$$\epsilon = \frac{19\pi^2}{12}T^4 + \frac{(\mu_B + 2\mu_Q)^2 + (\mu_B - \mu_Q)^2 + (\mu_B - \mu_Q - 3\mu_S)^2}{6}T^2 + \frac{(\mu_B + 2\mu_Q)^4 + (\mu_B - \mu_Q)^4 + (\mu_B - \mu_Q - 3\mu_S)^4}{108\pi^2},$$

$$n_B = \frac{\mu_B - \mu_S}{3}T^2 + \frac{(\mu_B + 2\mu_Q)^3 + (\mu_B - \mu_Q)^3 + (\mu_B - \mu_Q - 3\mu_S)^3}{81\pi^2},$$

$$n_Q = \frac{2\mu_Q + \mu_S}{3}T^2 + \frac{2(\mu_B + 2\mu_Q)^3 - (\mu_B - \mu_Q)^3 - (\mu_B - \mu_Q - 3\mu_S)^3}{81\pi^2},$$

$$n_S = -\frac{\mu_B - \mu_Q - 3\mu_S}{3}T^2 - \frac{(\mu_B - \mu_Q - 3\mu_S)^3}{27\pi^2}.$$

 $n_S(t)=0 \qquad \rightarrow \mu_B-\mu_Q-3\mu_S=0$

$$\rightarrow \begin{array}{l} \epsilon = \frac{19\pi^2}{12}T^4 + 3\frac{(\mu_B - 2\mu_S)^2 + \mu_S^2}{2}T^2 + 3\frac{(\mu_B - 2\mu_S)^4 + \mu_S^4}{4\pi^2}, \\ n_B = \frac{\mu_B - \mu_S}{3}T^2 + \frac{(\mu_B - 2\mu_S)^3 + \mu_S^3}{3\pi^2}, \\ n_Q = \frac{2\mu_B - 5\mu_S}{3}T^2 + \frac{2(\mu_B - 2\mu_S)^3 - \mu_S^3}{3\pi^2}. \end{array}$$
 used for each

used for extraction of $T\&\mu$

Extractions of T & μ (μ_B , μ_S , μ_Q)

 $\varepsilon \& n_B, n_S, n_Q \\ \rightarrow T \& \mu_B, \mu_S, \mu_Q$

collision trajectory in 4-d T-µ space

Extractions of T & μ (μ_B , μ_S , μ_Q)

Mendenhall & ZWL, arXiv:2111.13932

FRG crossover curve and CEP: from Functional Renormalization Group Fu, Pawlowski & Rennecke, PRD (2020)

Mendenhall & ZWL, arXiv:2111.13932

Large effect of finite nuclear thickness on T- μ_B trajectory at lower energies

 $\tau_{\rm F}$ affects T& μ_B peak values, but not much the hadronization point.

Extractions of T & μ (μ_B , μ_S , μ_Q)

See C. Ratti's Tuesday talk on $\mu_Q \& \mu_S$ used in lattice QCD

Partial-1 solution

assumes $\mu_Q = 0 \& \mu_S = \mu_B/3$ to simplify the problem $\varepsilon \& n_B, n_S, n_Q \to T \& \mu_B, \mu_S, \mu_Q$

to $\varepsilon \& n_B \to T \& \mu_B$:

$$\epsilon_1 = \frac{19\pi^2}{12}T^4 + \frac{\mu_B^2}{3}T^2 + \frac{\mu_B^4}{54\pi^2},$$
$$n_{B,1} = \frac{2\mu_B}{9}T^2 + \frac{2\mu_B^3}{81\pi^2}.$$

Partial-2 solution:

neglects $\mu_Q \& \mu_S$ terms in densities, equivalent to assuming

 $\mu_Q = 0 \& \mu_S = 0$:

$$\epsilon_2 = \frac{19\pi^2}{12}T^4 + \frac{\mu_B^2}{2}T^2 + \frac{\mu_B^4}{36\pi^2},$$
$$n_{B,2} = \frac{\mu_B}{3}T^2 + \frac{\mu_B^3}{27\pi^2}.$$

This violates $\mu_B - \mu_Q - 3\mu_S = 0$ (or strangeness neutrality) and gives bad results on μ_B .

Collision Trajectory in the T- μ_B Diagram: QGP Lifetime

Mendenhall & ZWL, arXiv:2111.13932

start time: time the trajectory first crosses the crossover curve **end time**: time the trajectory crosses the crossover curve again

t_{OGP}=(end time) - (start time)

 t_{QGP} at low energies is still big (~2-4 fm/c),

even shows a rise towards threshold energy.

These are also seen in AMPT model results: Wang, Ma, ZWL & Fu, arXiv:2102.06937v2

Todd Mendenhall has written a <u>web interface</u> to perform these calculations of $\varepsilon(t)$ and T & $\mu(\mu_B, \mu_S, \mu_O)$

- Link is also available via <u>http://myweb.ecu.edu/linz/densities/</u> or bottom of the AMPT webpage <u>http://myweb.ecu.edu/linz/ampt</u>
- Takes input from user:

Atomic Number (for projectile as well as target): 79
Atomic Mass Number (for projectile as well as target): 197
Center-of-Mass Energy per Nucleon Pair (AGeV): 200
Formation time (fm/c): 0.3
Number of times to sample time evolution (an integer between 1 and 100): 30
Statistics: OQuantum OBoltzmann
Submit

• Plots $\varepsilon(t)$ & T- μ_B trajectory, user can download full data file

Semi-analytical calculation of the average ϵ and $T-\mu_B$ trajectory of central A+A collisions

(Updated March 1, 2022)

The data file contains the time evolution of the energy density, temperature, and three chemical potentials.

Collision Trajectory in the T- μ_B Diagram: from AMPT

Wang, Ma, ZWL & Fu, arXiv:2102.06937v2

Qualitatively the same as semi-analytical results:

- $\mu_Q \sim 0 \& \mu_S \sim \mu_B / 3$
- Big effect of nuclear thickness at lower energies.

Conclusions

- We have developed a semi-analytical method to calculate densities ε & n from the initial/primary collisions; the ε part = extension of the Bjorken ε formula to lower energies by including the finite nuclear thickness.
- At low energies like the BES, finite nuclear thickness has big effects on ɛ & n and consequently on event trajectories.
- The method can be used to calculate collision trajectory in the 4-dimensional T-μ (μ_B, μ_S, μ_Q) space including the T-μ_B plane; a webpage is written to perform these calculations.
- Partial solution ($\mu_Q = 0 \& \mu_S = \mu_B/3$) satisfies strangeness neutrality & simplifies the 4d problem to 2d: $\varepsilon \& n_B, n_S, n_O \leftrightarrow T \& \mu_B, \mu_S, \mu_O$ to $\varepsilon \& n_B \leftrightarrow T \& \mu_B$