How can we reduce the "no beam,, time?

Walter Venturini Delsolaro

D. Arnoult, S. Claudet, G. Cumer, K. Dahlerup Petersen, R. Denz, F. Duval, V. Montabonnet, D. Nisbet, H. Thiesen

LHC Performance Workshop – Chamonix 2011

Outline

- Beam statistics for the 2010 run, H factor
- How to reduce the no beam time:
 - Faults statistics of top 4 systems (mitigation actions)
 - Review of technical stops
 - Possible gains in setup time without beam

Machine statistics 2010

Machine statistics along the run

Month

physics oriented operation 0.2 < H < 0.3

August

Faults downtime distribution

QPS detailed statistics and mitigation actions

Equipment type	Faults	Qty.	Availability [%]	MTBF [hours]
Quench heater power supplies	26	6076	99.998	1145760
Quench detection systems	19	10438	99.999	3362135
DAQ caused by radiation (SEU)	12	1624	99.997	828240
DAQ other causes than radiation	8	2532	99.999	1936980
DAQ all faults combined	20	2532	99.997	774792

Equipment type	Mitigation	
Quench heater power supplies	Replacement of faulty switches (1000), additional softwa	re interlocks allowing to ower supplies and op
Quench detection systems	CE SAME CE	rease EMC immunity re-cabling of current
DAQ caused by radiation (SEU)		
	And a second	R

Cryogenics downtime and perspectives (S. Claudet)

Major causes in 2010	Forecasts 2011
Cold Compressors (bearings, drives)	Less failures (1 or 2)
Consolidation done at Xmas, and new diagnostics	
Sub-atm filter clogging:	No perturbations (possible
Last leaks (P4) identified at Xmas and treated	surprise at Beg. of the run)
Valves for flow control of current leads:	Almost no failure, existing
50% of valves changed with new type (flex bearings)	mitigation program continued
Instrumentation:	Less failures (max. 10?)
Fuses, old FPGA cards, non-conformity treated at Xmas	
24V power supply units:	Few failures (1 or 2)
Checks done all sites, long term repair under investigation	
	+ 2-5 failures due to minimal
	preventive maintenance

PC detailed statistics and mitigation actions

Detailed analysis fault statistics of power supplies in EDMS 1109277

EL-UPS (LHC downtime)

Electrical network perturbations

Technical Stops

- In 2010 we had **6**, as scheduled, starting on March 15
- Pattern: 4-36-3-31-4-45-5-37-4-45-4-40+
- After TS, an increment in faults was observed. Effect is decreasing along the run

Expressed needs for TS in 2011

- Cryo: "3 TS equally spaced, 4 days each"
- QPS: "at least two, first one not too late. 4 days too short"
- EPC: "none, see how it goes with 60A"
- EL: "frequency is not important, but 4 days too short. Can reduce during the run but must recuperate during the Xmas break"
- CV: same as EL
- Experiments?
- •

Setup without beam: Q4 ramp down time is the bottleneck, due to converter topology and warm cables resistances

......

How to ramp down faster

 Ramp down "open loop" (less precision on current with no beam) IT becomes the bottleneck →IT min time from 3.5 TeV to I min op ~ 25 minutes (H. Thiesen)

Would bring advantages in controllability,

- optics flexibility (and gain time when squeezing to low β^*)
- IT warm cables section "over sized", reducing it could gain ~30% in time constant while keeping reasonable margin

Hardware changes not possible before next long shutdown

Access recovery

Today: need to pre cycle after access, as the main magnets are put off. A new procedure (under approval) proposes to leave them at 100 A

760 A

100 A (access here)

Magnetically almost equivalent, small effect on static b_3 (Q')

Conclusions: how can we reduce....

- Reduce fault numbers: mitigation QPS, Cryo, PC
- Review frequency and duration of TS
- Faster turnaround:
 - IPQs, IT: gain 10 mins with no hardware changes
 - Hw changes (with gains for squeeze duration and optics flexibility) possible during long shutdown
- No pre cycle after short access (needs approval of new prodedure)

Backup slides

Results for 2010 above expectations, thanks as well to periodic technical stops

LHC Cryo global availability

Perturbations: clogging sub-atm circuits-CV891-instrumentation-Shaft seals-VFD/MB-24V

Cryogenics detailed statistics

Availability, as percent of the time since 1st beams

L. Bottura