Do We Really Need the HC Luminosity Upgrade?

O. Brüning

Many thanks for help from: Ralph Assmann, Gianluigi Arduini, Christian Carli, Elena Chaposhnikova, Haiko Damerau, Wolfram Fischer, Stephane Fartoukh, Werner Herr, John Jowett, Riccardo de Maria, Vladimir Shiltsev, Simone Gilardoni, Massimo Giovannozzi, Elias Metral, Laurent Tavian, Maurizio Vretenar, Frank Zimmermann

- \rightarrow 1) maximize bunch intensity (beam-beam limit)
- \rightarrow 2) minimize beam size (constant beam power)
- \rightarrow 3) maximize number of bunches
 - Operation at beam-beam limit
 → use R for performance optimization leveling: LPS, SE, CC

→ What is the beam-beam limit in the LHC?!

LHC Challenges: Beam-Beam Interaction

Werner Herr et al, LPN 416

Chamonix, January 2011

LHC Challenges: Beam-Beam Interaction

Tune Footprint: Pacman bunches alternating crossing planes

nominal beams all insertions Head-on & Long range

Chamonix, January 2011

Expected Beam-Beam limit for the LHC

Experience from other machines:

1)SppS: $\xi = 0.006$ with 3 IPs $\rightarrow \Delta Q = 0.018$

Jacques Gareyte (a) LHC'99

2)Tevatron: $\xi = 0.01$ with 2 IPs $\rightarrow \Delta Q = 0.02$

V. Shiltsev & PRST, A&B 8, 2005

3)The performance in both colliders is limited by resonances and the b-b tune spread: avoid resonance of order 12 or lower! \rightarrow the tune is sandwiched between a low order resonance driven by lattice non-linearity and a high order resonance driven by beam-beam

4)Higher b-b tune shifts are possible but with degraded performance (luminosity lifetime and background – not yet a problem in the LHC)

PRST, A&B 8, 2005

Chamonix, January 2011

Expected Beam-Beam limit for the LHC

Nominal LHC configuration and design report assumption:

Jacques Gareyte @1)Place the tunes between 10th and 3rd order resonances:LHC Q_x = 64.31; Q_y = 59.32 (SppS equivalent below the half integer)

2)Assuming that coupling will be bigger in the LHC than in the SppS, the LHC tunes are separated by $\delta Q = 0.01 \Rightarrow$

- → total space available in tune diagram: $\Delta Q = 0.01$
- → can go to $\Delta Q = 0.015$ if coupling is small and $\delta Q = 0.005$.

3)Use alternate crossing planes to minimize overall tune foot print with long-range beam-beam.

3)Use β^* to control long-range beam-beam (soft landing)

LHC Challenges: Beam-Beam Interaction

Werner Herr & Dobrin Kaltchev

Chamonix, January 2011

- beams dumped right after colliding (~1 minute)
- clear dependence of losses on number of H.O. collisions
- some bunches b2 lose up to 5% in the first few seconds
 - 12 out of 14 biggest losers from first 3 16-bunch injections
 - 10^{th} 11^{th} 12^{th} 13^{th} in the 16-bunch train

IPs: 1 5 2 8 - 1 5 8 - 1 5 2 - 1 5 - 2 8 - 8 - 2

giulia papotti (BE/OP/LHC)

LHC Challenges: Beam-Beam Interaction

Chamonix, January 2011

Expected Beam-Beam limit for the LHC

Modified LHC configuration:

1)Avoid small amplitude particles close to resonance clusters. Halo particles are also faster lost if close to resonance but impact on luminosity should be small Tevatron

1)Divide the bunches in 3 groups: 1, 2 and 3 head on collisions

2)Adjust pre collision tune such that all tunes are below 1/3rd resonance and low amplitude particles for each group are above a strong resonance cluster:

- One group above 4/13th
- One group above 3/10th
- One group above 2/7th

Chamonix, January 2011

<u>Performance estimates in terms of β^* :</u>

Minimum β^* at 7 TeV for existing triplet:

 $-\beta^*$ of 0.3m to 0.4 based on measured aperture and nominal settings

 $\begin{array}{l} \mbox{HL LHC Upgrade:} & S. Fartoukh \\ -\beta^* \ of \ 0.15m \ accessible \ for \ round \ beams \ @ \ 7 \ TeV \\ -\beta^* \ of \ 0.3m \ / \ 0.075m \ accessible \ for \ flat \ beams \ @ \ 7 \ TeV \end{array}$

Long range b-b can be alleviated by β^* increase ('soft landing'): \rightarrow assume 20% larger β^* as quoted for normal operation

J. Gareyte

→ β* of 0.5m accessible for round beams @ 7 TeV with nom
 → β* of 0.2m accessible for round beams @ 7 TeV with HL

Assumptions on Injector Performance I:

Existing injector performance:PAC'07;
CERN-AB-2007-037-50ns: 1.2 10¹¹ ppb; $\varepsilon_n = 2.5 \mu m$ to 3 μm (SB injection into PS)-50ns: 1.2 10¹¹ ppb; $\varepsilon_n = 1.5 \mu m$ (DB 2008 MD [EM])-50ns: 1.7 10¹¹ ppb; $\varepsilon_n = 3 \mu m$ to 4 μm (SB injection into PS) \rightarrow limited by SPS single bunch

→ 1.7 10¹¹ ppb; $\varepsilon_n = 1.8 \mu m$ to 2.5 μm with DB?!?

-25ns: 1.2 10¹¹ ppb; $\varepsilon_n = 3\mu m$ to 4 μm (GA)

-25ns: 1.4 10¹¹ ppb; $\varepsilon_n = 4\mu m$ to 10 μm (limited by SPS instabilities [EC])

Existing injector performance with LINAC4:

-50ns: 2.5 10¹¹ ppb; $\varepsilon_n = 3.5 \ \mu m$ (if not limited by e-cloud; scaled from 2008 MD and relying on lower γ -t SPS lattice)

-25ns: 1.4 10¹¹ ppb; $\varepsilon_n = 3.5 \mu m - 10 \mu m$ (single batch [MV 2010& EC])

Performance reach for existing machines @ 7 TeV:

		nominal e	mittance	small emittance	
Parameter	nominal	25ns 5	50ns	50ns	
Ν	1.15E+11	1.2E+11	1.7E+11	1.7E+11	
n _b	2808	2808	1404	1404	
beam current [A]	0.58	0.61	0.43	0.43	
x-ing angle [μ rad]	300	320	320	270	
beam separation $[\sigma]$	10	10	10	10	
β* [m]	0.55	0.5	0.5	0.5	
ε _n [μ m]	3.75	3.75	3.75	2.5	
ε _L [eVs]	2.51	2.5	2.5	2.5	
energy spread	1.00E-04	1.00E-04	1.00E-04	1.00E-04	Radiation
bunch length [m]	7.50E-02	7.50E-02	7.50E-02	7.50E-02	damping:
IBS horizontal [h]	80 -> 106	101	71	29	hor: 26h
IBS longitudinal [h]	61 -> 60	58	41	25	ver: 13h
Piwinski parameter	0.68	0.76	0.76	0.78	
geom. reduction	0.83	0.80	0.80	0.79	
beam-beam / IP	3.10E-03	3.1E-03	4.4E-03	6.6E-03	
Peak Luminosity	1 10 ³⁴	1.0 10 ³⁴	1.2 10 ³⁴	1.7 10 ³⁴	

aminal amittanaa

Performance reach for existing machines + LINAC4:

		nominal entituance		
Parameter	nominal	25ns	50ns	
Ν	1.15E+11	1.4E+11	2.5E+11	
n _b	2808	2808	1404	
beam current [A]	0.58	0.71	0.64	
x-ing angle [µrad]	300	320	320	
beam separation $[\sigma]$	10	10	10	
β* [m]	0.55	0.5	0.5	
ε _n [μ m]	3.75	3.75	3.75	
ε _L [eVs]	2.51	2.2	2.5	
energy spread	1.00E-04	1.00E-04	1.00E-04	
bunch length [m]	7.50E-02	7.50E-02	7.50E-02	
IBS horizontal [h]	80 -> 106	80	45	
IBS longitudinal [h]	61 -> 60	41	23	
Piwinski parameter	0.68	0.76	0.76	
geom. reduction	0.83	0.80	0.80	
beam-beam / IP	3.10E-03	3.64E-03	6.5E-03	
Peak Luminosity	1 10 ³⁴	1.6 10 ³⁴	2.5 10 ³⁴	

Chamonix, January 2011

Assumptions on Injector Performance II:

Injector performance with LINAC4 and upgrades (PSB):

-50ns: 2.7 $10^{11} \le 3.5 \ 10^{11}$ ppb; $\varepsilon_n = 1.1 \ \mu m \le \varepsilon_n = 1.5 \ \mu m$ (SG, MG and HD assuming a Laslett space charge limit of $\Delta Q = -0.3$)

-25ns: 1.7 $10^{11} \le 2.0 \ 10^{11}$ ppb; $\varepsilon_n = 1.5 \ \mu m \le \varepsilon_n = 1.8 \ \mu m$ (SG, MG and HD assuming a Laslett space charge limit of $\Delta Q = -0.3$)

Injector performance with LINAC4 and upgrades: SPS SC limit

-50ns: 3.3 10¹¹ ppb; $\varepsilon_n = 3.75 \ \mu m$ (SPS space charge EC: $\Delta Q = -0.13$)

-25ns: 2.0 10¹¹ ppb; $\varepsilon_n = 2.5 \ \mu m$ (SPS space charge EC: $\Delta Q = -0.13$)

Performance reach for LINAC4 + LIU + HL triplet:

		small β*		'large' β*	
Parameter	nominal	25ns !	50ns	25ns	50ns
Ν	1.15E+11	2.0E+11	3.3E+11	2.0E+11	3.3 E+11
n _b	2808	2808	1404	2808	1404
beam current [A]	0.58	1.02	0.84	1.02	0.84
x-ing angle [µrad]	300	420	520	270	320
beam separation $[\sigma]$	10	10	10	10	10
β* [m]	0.55	0.2	0.2	0.5	0.5
ε _n [μ m]	3.75	2.5	3.75	2.5	3.75
ε _L [eVs]	2.51	2.5	2.5	2.5	2.5
energy spread	1.00E-04	1.00E-04	1.00E-04	1.00E-04	1.00E-04
bunch length [m]	7.50E-02	7.50E-02	7.50E-02	7.50E-02	7.50E-02
IBS horizontal [h]	80 -> 106	25	37	25	37
IBS longitudinal [h]	61 -> 60	21	21	21	21
Piwinski parameter	0.68	1.92	1.95	0.78	0.76
geom. reduction	0.83	0.46	0.46	0.79	0.80
beam-beam / IP	3.10E-03	4.5E-03	4.9E-03	7.7E-3	8.6E-3
Peak Luminosity	1 10 ³⁴	7.0 10 ³⁴	6.3 10 ³⁴	4.8 10 ³⁴	4.4 10 ³⁴

Performance reach for LINAC4 + LIU + HL triplet: long bunch

		small β*		'large' β*	
Parameter	nominal	25ns	50ns	25ns	50ns
Ν	1.15E+11	2.0E+11	3.3E+11	2.0E+11	3.3 E+11
n _b	2808	2808	1404	2808	1404
beam current [A]	0.58	1.02	0.84	1.02	0.84
x-ing angle [µrad]	300	420	520	270	320
beam separation $[\sigma]$	10	10	10	10	10
β* [m]	0.55	0.2	0.2	0.5	0.5
ε _n [μ m]	3.75	2.5	3.75	2.5	3.75
ε _L [eVs]	2.51	3.0	3.0	3.0	3.0
energy spread	1.00E-04	1.00E-04	1.00E-04	1.00E-04	1.00E-04
bunch length [m]	7.50E-02	0.1	0.1	0.1	0.1
IBS horizontal [h]	80 -> 106	>40	56	>40	56
IBS longitudinal [h]	61 -> 60	>40	56	>40	56
Piwinski parameter	0.68	2.57	2.59	1.04	1.00
geom. reduction	0.83	0.36	0.36	0.69	0.70
beam-beam / IP	3.10E-03	3.6E-03	4.9E-03	6.8E-3	7.6E-3
Peak Luminosity	1 10 ³⁴	5.5 10 ³⁴	4.9 10 ³⁴	4.2 10 ³⁴	3.9 10 ³⁴

Do we really need the LHC luminosity upgrade? Yes

-Existing LHC & injectors can reach nominal performance with 25ns and 50ns beams: $L = 1 \ 10^{34} \ cm^{-2} \ sec^{-1}$

-Small emittance option with 50ns operation can reach:

 $L = 1.7 \ 10^{34} \ cm^{-2} \ sec^{-1}$

(a) half nominal total beam current for 50ns beam option -Nominal machine with LINAC4 and 50ns operation can reach: $L = 2.5 \ 10^{34} \ cm^{-2} \ sec^{-1}$

with approximately nominal total beam current

-Full upgrade can reach:

 $L \ge 5 \ 10^{34} \ cm^{-2} \ sec^{-1}$

with geometric reduction factor!

→ CC & LRBB wires are ideal tool for leveling!

Beam-beam limit:

-Assuming a beam-beam limit of 0.02 and alternating crossing for round beams (geometric reduction of ξ_{b-b}) LHC reaches b-b limit only with all upgrade options, 50ns beams and $\beta^* = 0.5m$.

-The beam-beam limit can also be reached with other upgrade configurations if:

-LRBB compensation is implemented

 $(\rightarrow$ can operate with smaller crossing angle \rightarrow larger 'R')

-With the Crab cavity operation (\rightarrow larger 'R')

→ LRBB wire compensation and Crab cavities are ideal tools for luminosity leveling and maximizing integrated luminosity

Beam-beam limit:

-Actual beam-beam limit in the LHC is vital input for LHC upgrade strategy (HL and LIU [e.g ε vs intensity optimization])

Should give measurement of maximum attainable beam-beam parameter a high priority in 2011 operation (as function of number of long-range collisions and separation!) ($\xi_{b-b} = 0.008$ in reach @ 3.5 TeV with 50ns, 1.7 10¹¹, $\epsilon = 2.5\mu m$)

Should also address the importance of lifetime degradation of tail particles above 3 σ .

➔ Should test operational procedures for tune adjustments during luminosity fill to compensate for tune changes as beam intensity drops over a fill!

General limit:

-Total beam current of ca. 0.8 A at limit of LHC cryo system [Laurent Tavian] + limits from other major LHC components (R. Assmann in Chamonix 2010)

→Assuming the performance of the injector complex is limited by brightness [e.g. space charge] it would be interesting to reduce the beam emittance at constant brightness

→ 50ns bunch operation attractive option to minimize total current and e-cloud (but: larger pile up in experiments!) Summary Performance Reach for small ε:

Injector performance when optimized for small ϵ : -What is the smallest emittance we can generate for nominal and ultimate intensities at 25ns and 50ns? \rightarrow MD studies

Injector performance when optimized for $\varepsilon = 2.5 \ \mu m$ or 3.75 μm : -What is the maximum bunch intensity we can generate for a given normalized emittance at 25ns and 50ns? \rightarrow MD studies (space charge limit in the SPS – measurements with low γ -t lattice)

Other Potential Performance Limitations

electron cloud effects → vacuum & beam instabilities

- → cryogenic load (in the LHC)
- \rightarrow bunch spacing (50ns) \rightarrow beam scrubbing

fill abort and overall efficiency
 beam scrubbing?

collective effects:

TMCI threshold of 3.5 10¹¹ppb (Q' = 0)
coupled bunch limit might be smaller

&

UFOs

for modified cleaning insertions faults and overall efficiency: → average turnaround time (R2E) → statistics (Evian: ca. 25%)

Chamonix, January 2011

Spare Transparencies

LHC Challenges: Beam-Beam Interaction

LHC working point: n+m < 12

→ $Q_x = 64.31; Q_y = 59.32$ total tune spread must be smaller than 0.018 (SppS experience) keep $\delta Q = 8 \ 10^{-3}$ for operation tolerances and coupling!

bunch intensity limited by beam-beam force:

3 head-on/bunch $\rightarrow \xi_{\text{beam-beam}} < 3.3 \ 10^{-3} \rightarrow N < 1.2 \ 10^{11}$ 2 head-on/bunch $\rightarrow \xi_{\text{beam-beam}} < 5 \ 10^{-3} \rightarrow N < 1.7 \ 10^{11}$

What is SPS space charge limit at 26 GeV/c?

Single bunch data with nominal ($\gamma_t = 22.8$) and "low γ_t " optics ($\gamma_t = 18$) "Low γ_t " data scaled by 30% in intensity (for low V and losses) linear fit: ϵ = 1.4 (N/10¹¹) \rightarrow space charge limit $\Delta Q_{sch} \sim 0.13$ (nominal LHC beam ΔQ =0.05)

 \rightarrow preliminary results, accurate measurements in 2011

Assumptions on Injector Performance III:

Special filling scheme using 64 bunches per PS (SB!): [Christian Carli]

-25ns: 2.2 10¹¹ ppb; $\varepsilon_n = 2.5 \ \mu m \text{ (at exit PS)} \rightarrow \text{ nom. emittance in LHC?}$ with 2688 bunches in the LHC

-50ns: 2.5 $10^{11} \le 5 10^{11}$ ppb; $\varepsilon_n = 2.5 \ \mu m$ (at exit PS) with 1344 bunches in the LHC

LHC following upgrade @ P1 & P5 (2021) (New cryoplants for ITs cooling)

Summary of LHC Intensity Limits (7 TeV)

LMC: R. Assmann

cooling & e- heat for 25 ns spacing

going above N_b =1.7x10¹¹ & ultimate luminosity requires dedicated IR cryo plants; limit then becomes N_b ~2.3x10¹¹

cooling & e- heat for 50 ns spacing

going above N_b =2.3x10¹¹ & ultimate luminosity requires dedicated IR cryo plants; limit then becomes N_b ~5.0x10¹¹

2N

Operation at the Beam-Beam Limit

Options for maximizing luminosity at the beam-beam limit:

$$L \propto \Delta Q_{bb} \cdot \frac{N_b}{\beta^*} \quad \Delta Q_{bb} \propto \frac{N_b}{\varepsilon} \cdot R(\beta^*)$$

(for alternating crossing)

0.6

0.8

0.4

1) keep β^* and N/ ϵ constant increase current at constant brightness

 $\epsilon_n > 3.75 \ 10^{-6} \ \mu m$ requires controlled ϵ blow up at top energy

2) keep ε_n constant and increase N with 1/R (LPA) \rightarrow 1) and 2) imply larger than ultimate beam currents; 2) requires larger than ultimate brightness!

3) keep N constant and vary ε as R (referred to as small emittance scheme)

 \rightarrow requires smaller than nominal emittance

→ leveling via aperture or Crab Cavities

4) compensate R at IP and minimize β^*

0.2

0.6

0.5

0.4 0.3

0

 \rightarrow is compatible with ultimate beam parameters; requires Crab Cavities

Chamonix, January 2011

<u>Performance estimates in terms of β^* :</u>

Minimum β^* at 3.5 TeV:

- $-\beta^*$ of 0.8m based on measured aperture and nominal settings
- $-\beta^*$ of < 2m accessible for measured aperture and emittance
- $-\beta^* = 1.1m$ based on nominal machine scaled by energy
- → $\beta^* = 1.1$ m used as reference in the following

HL LHC Upgrade:

- $-\beta^*$ of 0.15m accessible for round beams @ 7 TeV S. Fartoukh
- $-\beta^*$ of 0.3m / 0.075m accessible for flat beams @ 7 TeV

J. Gareyte

Long range b-b can be alleviated by β^* increase ('soft landing'): \rightarrow assume 10% larger β^* as quoted for normal operation Summary Assumptions for Performance Estimates:

Beam-beam parameter of 0.02 to 0.03 accessible

β^* (optimistic estimates with 10% margin for beam-b):

- $-\beta^*$ of 1.5m for round beams with nom. triplet @ 3.5 TeV
- $-\beta^*$ of 0.6m for round beams with nom. triplet @ 7 TeV
- $-\beta^*$ of 0.2m for round beams with HL upgrade

bunch intensity and brightness:

-50ns: 10^{11} ppb @ $\epsilon_n = 1.5 \ \mu m$ to 2 μm -50ns: 1.7 10¹¹ to 5.4 10¹¹ ppb @ nominal emittance $\epsilon_n = 3.75 \ \mu m$ -25ns: 10¹¹ to 2.7 10¹¹ ppb @ nominal.emittance $\epsilon_n = 3.75 \ \mu m$

LHC limitations at 7 TeV operation:

-Cooling power: ca. 1.4 A / beam

-Cleaning inefficiency and impedance: lifetime? efficiency

Chamonix, January 2011

Performance reach for existing machines @ 7 TeV:

		nominal em	small emittance	
Parameter	nominal	25ns 50	ns	50ns
Ν	1.15E+11	1.2E+11	1.7E+11	1.7E+11
n _b	2808	2808	1404	1404
beam current [A]	0.58	0.61	0.43	0.43
x-ing angle [µrad]	300	320	320	270
beam separation $[\boldsymbol{\sigma}]$	10	10	10	10
β* [m]	0.55	0.5	0.5	0.5
ε _n [μ m]	3.75	3.75	3.75	2.5
ε _L [eVs]	2.51	2.5	2.5	2.5
energy spread	1.00E-04	1.00E-04	1.00E-04	1.00E-04
bunch length [m]	7.50E-02	7.50E-02	7.50E-02	7.50E-02
IBS horizontal [h]	80	72	51	20
IBS longitudinal [h]	61	43	30	18
Piwinski parameter	0.68	0.76	0.76	0.78
geom. reduction	0.83	0.80	0.80	0.79
beam-beam / IP	3.10E-03	3.1E-03	4.4E-03	6.6E-03
Peak Luminosity	1 10 ³⁴	1.0 10 ³⁴	1.2 10 ³⁴	1.7 10 ³⁴

aminal amittanaa

Performance reach for existing machines + LINAC4:

		nominal entitudice		
Parameter	nominal	25ns	50ns	
Ν	1.15E+11	1.4E+11	2.5E+11	
n _b	2808	2808	1404	
beam current [A]	0.58	0.71	0.64	
x-ing angle [µrad]	300	320	320	
beam separation $[\sigma]$	10	10	10	
β* [m]	0.55	0.5	0.5	
ε _n [μm]	3.75	3.75	3.75	
ε _L [eVs]	2.51	2.2	2.5	
energy spread	1.00E-04	1.00E-04	1.00E-04	
bunch length [m]	7.50E-02	7.50E-02	7.50E-02	
IBS horizontal [h]	80	62	35	
IBS longitudinal [h]	61	37	21	
Piwinski parameter	0.68	0.76	0.76	
geom. reduction	0.83	0.80	0.80	
beam-beam / IP	3.10E-03	3.64E-03	6.5E-03	
Peak Luminosity	1 10 ³⁴	1.6 10 ³⁴	2.5 10 ³⁴	

Chamonix, January 2011

Performance reach for LINAC4 + LIU + HL triplet:

		small β*		'large' β*	
Parameter	nominal	25ns	50ns	25ns	50ns
Ν	1.15E+11	2.0E+11	3.3E+11	2.0E+11	3.3 E+11
n _b	2808	2808	1404	2808	1404
beam current [A]	0.58	1.02	0.84	1.02	0.84
x-ing angle [µrad]	300	420	520	270	320
beam separation $[\sigma]$	10	10	10	10	10
β* [m]	0.55	0.2	0.2	0.5	0.5
ε _n [μ m]	3.75	2.5	3.75	2.5	3.75
ε _L [eVs]	2.51	2.5	2.5	2.5	2.5
energy spread	1.00E-04	1.00E-04	1.00E-04	1.00E-04	1.00E-04
bunch length [m]	7.50E-02	7.50E-02	7.50E-02	7.50E-02	7.50E-02
IBS horizontal [h]	80	16	26	16	26
IBS longitudinal [h]	61	17	16	17	16
Piwinski parameter	0.68	1.92	1.95	0.78	0.76
geom. reduction	0.83	0.46	0.46	0.79	0.80
beam-beam / IP	3.10E-03	4.5E-03	4.9E-03	7.7E-3	8.6E-3
Peak Luminosity	1 10 ³⁴	7.0 10 ³⁴	6.3 10 ³⁴	4.8 10 ³⁴	4.4 10 ³⁴

Performance reach for LINAC4 + LIU + HL triplet: long bunch

		small β*		'large' β*	
Parameter	nominal	25ns	50ns	25ns	50ns
Ν	1.15E+11	2.0E+11	3.3E+11	2.0E+11	3.3 E+11
n _b	2808	2808	1404	2808	1404
beam current [A]	0.58	1.02	0.84	1.02	0.84
x-ing angle [µrad]	300	420	520	270	320
beam separation $[\sigma]$	10	10	10	10	10
β* [m]	0.55	0.2	0.2	0.5	0.5
ε _n [μ m]	3.75	2.5	3.75	2.5	3.75
ε _L [eVs]	2.51	3.0	3.0	3.0	3.0
energy spread	1.00E-04	1.00E-04	1.00E-04	1.00E-04	1.00E-04
bunch length [m]	7.50E-02	0.1	0.1	0.1	0.1
IBS horizontal [h]	80	23	35	23	35
IBS longitudinal [h]	61	21	21	21	21
Piwinski parameter	0.68	2.57	2.59	1.04	1.00
geom. reduction	0.83	0.36	0.36	0.69	0.70
beam-beam / IP	3.10E-03	3.6E-03	4.9E-03	6.8E-3	7.6E-3
Peak Luminosity	1 1034	5.5 10 ³⁴	4.9 10 ³⁴	4.2 10 ³⁴	3.9 10 ³⁴