Summary Session 8: High Luminosity (HL-LHC) Chamonix 2011

Conveners: Lucio Rossi (Chair), Riccardo De Maria (Scientific Secretary)

- Do we really need the LHC luminosity upgrade? Or, which performance can we get without an upgrade? Oliver Bruning (CERN)
- Breaching the Phase I optics limitations for the HL-LHC.
 Stephane Fartoukh (CERN)
- HL-LHC: parameter space, constraints and possible options.
 Frank Zimmermann (AB/ABP)
- Expectations on Management and Performance Evolution: Lessons from Tevatron and Other Colliders. Vladimir Shiltsev (Fermilab)
- Alice and LHCb in the HL-LHC era. Sergio Bertolucci (CERN)

Performance goal for the HL-LHC (1/2)

→ <u>Integrated luminosity:</u>

 $3000 \text{ fb}^{-1} \rightarrow \sim 250\text{-}300 \text{ fb}^{-1} / \text{year} \rightarrow \sim 1 \text{ fb}^{-1} \text{ per fill}$ ($\sim 240 \text{ days/year}$ and a bit more than one good fill in average per day): the LHC target for 2011!

→ Running luminosity:

Sustained to $5E34 \text{ cm}^{-2}\text{s}^{-1}$ with leveling during 3-5 h + decay of a few hours:

→ Concept of "Virtual" luminosity:

Need more than 5E34, typically ~1.E35 cm⁻²s⁻¹ "stored", even if not usable due to limitations on the detector or on the machine side (e.g. pile-up or beam-beam).

In this respect, the "effective HL-LHC target" is still the nominal lumi \times 10, which requires pushing both the beam parameters and the optics (β *).

LHC Performance Estimates

erformance reach for existing machines @ 7 TeV:

Parameter	nominal
N	1.15E+11
n_b	2808
beam current [A]	0.58
x-ing angle [μrad]	300
beam separation $[\sigma]$	10
β^* [m]	0.55
ε_{n} [μ m]	3.75
$\varepsilon_{\!\scriptscriptstyle L}$ [eVs]	2.51
energy spread	1.00E-04
bunch length [m]	7.50E-02
IBS horizontal [h]	80 -> 106
IBS longitudinal [h]	61 -> 60
Piwinski parameter	0.68
geom. reduction	0.83
beam-beam / IP	3.10E-03
Peak Luminosity	1 1034

25ns nominal emittance		small emittance 50ns
1.2E+11	1.7E+11	1.7E+11
2808	1404	1404
0.61	0.43	0.43
320	320	270
10	10	10
0.5	0.5	0.5
3.75	3.75	2.5
2.5	2.5	2.5
1.00E-04	1.00E-04	1.00E-04
7.50E-02	7.50E-02	7.50E-02
101	71	29
58	41	25
0.76	0.76	0.78
0.80	0.80	0.79
3.1E-03	4.4E-03	6.6E-03
1.0 10 ³⁴	1.2 10 ³⁴	1.7 10 ³⁴

Radiatio n

damping: hor: 26h

ver: 13h

LHC Challenges: Beam-Beam Interaction

Werner Herr & Simulation @ injection Dobrin Kaltchev

 $\xi_{\rm bb}$ = 10 10⁻³

<u>Performance estimates in terms of β* :</u>

Minimum β^* at 7 TeV for existing triplet:

 $-\beta^*$ of 0.3m to 0.4 based on measured aperture and nominal settings

HL LHC Upgrade:

-β* of 0.15m accessible for round beams @ 7 TeV

 $-\beta^*$ of 0.3m / 0.075m accessible for flat beams @ 7 TeV

S. Fartoukh

Long range b-b can be alleviated by β^* increase ('soft landing'):

- \rightarrow assume 20% larger β^* as quoted for normal operation
- \rightarrow β^* of 0.5m accessible for round beams @ 7 TeV with nom
- \rightarrow β^* of 0.2m accessible for round beams @ 7 TeV with HL

J. Gareyte

<u>Assumptions on Injector Performance I:</u>

Existing injector performance:

PAC'07; CERN-AB-2007-037

-50ns: 1.2 10¹¹ ppb; $ε_n$ = 2.5μm to 3 μm (SB injection into PS)

-50ns: 1.2 10¹¹ ppb; $\varepsilon_n = 1.5 \mu m$ (DB 2008 MD [EM])

-50ns: 1.7 10¹¹ ppb; ε_n = 3 μ m to 4 μ m (SB injection into PS)

→ limited by SPS single bunch

→ 1.7 10¹¹ ppb; ε_n = 1.8 μ m to 2.5 μ m with DB?!?

-25ns: 1.2 10¹¹ ppb; $\varepsilon_n = 3\mu m$ to 4 μm (GA)

 \sim -25ns: 1.4 10¹¹ ppb; ϵ_n = 4 μ m to 10 μ m (limited by SPS instabilities [EC])

Existing injector performance with LINAC4:

-50ns: 2.5 10^{11} ppb; ϵ_n = 3.5 μm (if not limited by e-cloud; scaled from 2008 MD and relying on lower γ -t SPS lattice)

-25ns: 1.4 10¹¹ ppb; ε_n =3.5 μ m – 10 μ m (single batch [MV 2010& EC])

LHC Performance Estimates

Performance reach for LINAC4 + LIU + HL triplet: long bunch

Parameter N	nominal 1.15E+11
n _b	2808
beam current [A]	0.58
x-ing angle [μrad] beam separation [σ]	300 10
β* [m]	0.55
ε_n [μm]	3.75
$\varepsilon_{\!\scriptscriptstyle L}$ [eVs]	2.51
energy spread	1.00E-04
bunch length [m]	7.50E-02
IBS horizontal [h]	80 -> 106
IBS longitudinal [h]	61 -> 60
Piwinski parameter	0.68
geom. reduction	0.83
beam-beam / IP	3.10E-03
Peak Luminosity	1 1034

)ns
3.3E+11
1404
0.84
520
10
0.2
3.75
3.0
1.00E-04
0.1
56
56
2.59
0.36
4.9E-03
4.9 10 ³⁴

25ns ^{'large'} β*	50ns
2.0E+11	3.3 E+11
2808	1404
1.02	0.84
270	320
10	10
0.5	0.5
2.5	3.75
3.0	3.0
1.00E-04	1.00E-04
0.1	0.1
>40	56
>40	56
1.04	1.00
0.69	0.70
6.8E-3	7.6E-3
4.2 10 ³⁴	3.9 10 ³⁴

Summary Performance Reach:

Do we really need the LHC luminosity upgrade? Yes

- -Existing LHC & injectors can reach nominal performance with 25ns and 50ns beams: L = 1 10³⁴ cm⁻² sec⁻¹
- -Small emittance option with 50ns operation can reach:

 $L = 1.7 \ 10^{34} \ cm^{-2} sec^{-1}$

- @ half nominal total beam current for 50ns beam option
- -Nominal machine with LINAC4 and 50ns operation can reach:

 $L = 2.5 \ 10^{34} \ cm^{-2} sec^{-1}$

with approximately nominal total beam current

-Full upgrade can reach:

 $1 \ge 5 \cdot 10^{34} \text{ cm}^{-2} \text{ sec}^{-1}$

with geometric reduction factor!

→ CC & LRBB wires are ideal tool for leveling!

Breaching the Phase I optics limitations for the HL-LHC

S. Fartoukh BE-AP

with contributions from R. De Maria

- Performance goal of the HL-LHC
- An "Achromatic Telescopic Squeezing" (ATS) scheme to overcome the Phase I optics limitations
- Main weak point and mitigation measures
- Requested hardware modifications \rightarrow
- A possible parameter set for the HL-LHC w/o crab-cavity
- What can be tested now in the machine?
- Conclusions

Main References:

S. Fartoukh, sLHC-PR0049 & LMC 21/07/2010 R. D. Maria, S. Fartoukh, sLHC-PR0050 & LMC 21/07/2010

Optics & Layout repository:

/afs/cern.ch/eng/lhc/optics/SLHCV3.0

S. Fartoukh

LHC Performance Workshop 2011

Request for hardware changes

- <u>Longer Q5 (MQY) needed in IR6</u> for squeezing IR5 (~25% int. strength missing)
- → New MQY type needed: MQYL (4.8 m ~MQML)
- <u>Sextupole scheme</u>
- 1) Four additional sextupoles at Q10.L/R in IR1 and IR5
- 2) Sextupoles pushed to 600 A (or more!?) in sectors 45/56/81/12, at least the RSD circuits
- \rightarrow pushing the pre-squeezed optics down to $\beta^*=50$ cm (or below?) instead of 60 cm.
- <u>LSS1 and LSS5</u> (more details in next slide)
- 1) New IT, D1, D2, Q4, Q5 with larger aperture (D1 as close as possible to the IT, i.e. feed-box installed on the non-IP side of D1 or no feed-box at all with HTS technology).
- 2) Stronger and larger aperture MCBY orbit corrector at Q4 (and possibly Q5/Q6)
- Nb3Sn technology not mandatory but highly preferable for the new IT, e.g. reducing further the peak β 's in the arcs by 25%, the number of parasitic collisions (gain of 3-4 LR's per IP side) and the aperture requirements in the new 2-in-1 magnets D2 and Q4 (by \sim 10%).
- 4) New TAS and TAN with larger aperture and certainly new TCT like absorbers close to Q4 and Q5 both for the incoming and out-going beams.

Aperture requirement assuming an NbTi IT (nominal emittance, 7.5/30 cm or 30/7.5 cm flat optics, 13σ full X-angle, spurious H&V dispersion corrected via orbit bumps in the arcs)

The above requirements are also compatible with a 15/15 cm β *round optics and could be relaxed by ~10% (but for the TAS) with Nb3Sn triplet.

Luminosity vs. β^* in the Xing plane (with hour-glass effect) for different values of β^* in the other plane: nominal emittance and bunch length, ultimate intensity, no crab-cavity

Example of flat optics:

 $\beta^* = 30$ cm in the crossing-plane

 $\beta^* = \sigma_z = 7.5$ cm in the other plane

 $\Theta_{c} = 10\sigma$ in the plane of biggest β^*

 \rightarrow Peak lumi ~5.6 10³⁴cm ⁻²s ⁻¹

"Equivalent" round optics:

 $\beta^* = 15$ cm in both planes

 $\Theta_c = 10\sigma$

 \rightarrow Peak lumi ~3.5 10³⁴cm ⁻²s ⁻¹

- 1. The "virtual" performance of the two optics is equivalent with crab-cavity (~8-9E34),
- 2. In all cases the two options requires to push β^* well beyond the Phase I limit of 30 cm. ... Nb3Sn can only improve the situation by ~25%, not more!

HL-LHC: parameter space, constraints & possible options

```
R. Assmann, <u>C. Bhat, O.</u>
Brüning,
<u>R. Calaga</u>, R. De Maria,
<u>S. Fartoukh</u>, J.-P.
Koutchouk,
S. Myers, <u>L. Rossi</u>, W.
Scandale,
<u>E. Shaposhnikova</u>, R.
Tomas,
J. Tuckmantel ,... Chamonix 2011
```

LHC Performance Workshop

Frank Zimmermann

noto: courtesy R. Assmann

leveling schemes

· vary beam offset Δx (successful in 2010)

$$L_{lev} = \hat{L} \exp\left(-\left(\frac{\Delta x}{2\sigma}\right)^{2}\right); \quad \Delta Q_{lev} = \Delta \left\{\hat{Q} \left(2\left(\left[\exp\left(-\frac{(\Delta x)^{2}}{2\sigma^{2}}\right) - 1\right]\right] \frac{\sigma^{2}}{(\Delta x)^{2}} + \exp\left(-\frac{(\Delta x)^{2}}{2\sigma^{2}}\right)\right\} \right\}.$$

· vary Piwinski angle ϕpiw , that is σz , θc , or Vcrab

$$L_{lev} \approx \hat{L} \frac{1}{\sqrt{1 + \varphi_{piw}^2}}; \quad \Delta Q_{lev} \approx \Delta \hat{Q} \frac{1}{\sqrt{1 + \varphi_{piw}^2}}$$
 for two IPs with alternating crossing

· vary IP beta function β^* e.g. at constant ϕpiw

$$L_{lev} \approx \hat{L} \frac{\beta}{\beta_{lev}}; \qquad \Delta Q_{lev} \approx \Delta \hat{Q}$$

formulae above assume round beams

approaches to boost LHC luminosity

· low β^* & crab cavities (80 MV)

· low β* & higher harmonic RF (7.5 MV @800 MHz) + LR compensation

 large Piwinski angle (& "flat" bunch shape) + LR-BB compensation

example HL-LHC parameters, β *=15 cm

parameter	symbol	nom.	nom.*	HL crab	HL sb + lrc	HL 50+lrc
protons per bunch	<i>Nb</i> [1011]	1.15	1.7	1.78	2.16	3.77
bunch spacing	Δt [ns]	25	50	25	25	50
beam current	I [A]	0.58	0.43	0.91	1.09	0.95
longitudinal profile		Gauss	Gauss	Gauss	Gauss	Gauss
rms bunch length	σz [cm]	7.55	7.55	7.55	5.0	7.55
beta* at IP1&5	β* [m]	0.55	0.55	0.15	0.15	0.15
full crossing angle	θc [µrad]	285	285	(508-622)	508	508
Piwinski parameter	$\phi = \theta \cos z / (2*\sigma x*)$	0.65	0.65	0.0	1.42	2.14
tune shift	$\Delta Q tot$	0.009	0.0136	0.011	0.008	0.010
potential pk luminosity	L [1034 cm-2s-1]	1	1.1	10.6	9.0	10.1
events per #ing		19	40	95	95	189
effective lifetime	τeff[h]	44.9	30	13.9	16.8	14.7
run or level time	trun,level [h]	15.2	12.2	4.35	4.29	4.34
e-c heat SEY=1.2	P [W/m]	0.2	0.1	0.4	0.6	0.3
SR+IC heat 4.6-20 K	PSR+IC [W/m]	0.32	0.30	0.62	1.30	1.08
IBS ε rise time (z, x)	$\tau IBS,z/x$ [h]	59, 102	40, 69	38, 66	8, 33	18, 31
annual luminosity	<i>Lint</i> [fb-1]	57	58	300	300	300

preliminary conclusions - 1

HL-LHC parameter space well defined

to achieve 300 fb-1 per year:

- about 1 A beam current (+/- 10%)
- · potential peak luminosity 1035 cm-2s-1
- · run time 4.3 h ~ assumed turnaround time of 5 h
- \cdot β^* between 15 and ~30 cm

high(er) beam intensity helps in every regard

both 50-ns and 25-ns scenarios

200 fb-1 per year would relax intensity demand

preliminary conclusions - 2

beam-beam limit (at 0.02) no longer a constraint

three alternative scenarios for 300 fb-1 / year:

- crab cavities
- · higher harmonic RF (shorter bunches) + LR compensation
- 50 ns bunch spacing, large Piwinski angle,
 - + LR compensation

decreasing β^* from 30 to 15 cm is equivalent to 10-20% beam current increase (scenario -dependent)

effect of smaller ε similar to (better) than smaller β^*

proposed roadmap & branching points several MDs may be done regardless of HL-LHC and

- · LHC MDs for HL-LHC starting in 2011
 - ATF optics ingredients (telescope, phase changes)
 - LR beam-beam limits
 - effect of crossing angle on HO b-b limit
 - electron cloud limits
 - "flat beam" optics [S. Fartoukh, LHCMAC19, e.g. r~2, ∆n1~1
 - effect of crossing plane (H-V, V-V, H-H)
- · install LR-BB compensators in LHC (2013)
- · develop & prototype compact crab cavity (2011-16) for beam test in (SPS+) LHC (2017)
- · develop&install *LHC 800-MHz system* (2016?) F, Zimmermann

Beam-beam limit:

-Actual beam-beam limit in the LHC is vital input for LHC upgrade strategy (HL and LIU [e.g ε vs intensity optimization]) O. Bruening

Test the new scheme for squeezing at least one of the two IRs

S. Fartoukh

also benefit nominal

LHC performance

LHC 2010 Success in Numbers

Tevatron Run II "Complexity"

Some 30 steps, no "silver bullet"

Run II Luminosity Progress

	<u> </u>	
Improvement		Luminosity
		Increase
Pbar injection line AA → MI optics	12/2001	25%
Tevatron quenches on abort stopped by TEL-1	02/2002	0%, reliability
Pbar loss at Tevatron squeeze step 13 fixed	04/2002	40%
New Tevatron injection helix	05/2002	15%
New AA lattice reduces IBS, emittances	07/2002	40%
Tevatron injection lines tuned up (BLT)	09/2002	10%
Pbar coalescing improved in MI	10/2002	5%
Tevatron C0 Lambertson magnets removed	02/2003	15%
Tevatron sextupoles tuned/ SEMs taken out of pbar lines	06/2003	10%
New Tevatron helix on ramp, losses reduced	08/2003	2%
Tevatron magnets reshimming & realignment	12/2003	10%
MI dampers operations/ store length increased	02/2004	30%
2.5MHz AA → MI transfer improved/Cool shots	04/2004	8%
Reduction of β* to 35 cm	05/2004	20%
Antiprotons shots from both RR and AA	07/2004	8%
RR e-cooling operational	01-07/2005	~25%
Slip Stacking in MI	03/2005	~20%
Tevatron octupoles optimized at 150 GeV	04/2005	~5%
Reduction of of β* to 28 cm	09/2005	~10 %
"Pbar production task force"	02/2006	~10 %
Tevatron 150 GeV heliximproved, more protons	06/2006	~10 %
Tev collision helix improved, better lifetime	07/2006	~15 %
New RR WP, smaller pbar emittances	07/2006	~25 %
Fast transfers AA→RR (60→15min)	12/2006	~15%
New Pbar target/higher gradient	01/2007	~10%
Tevatron sextupoles for new WP	(2007?)	~10(?)%
Tevatron zero 2 nd order chromaticity	2008	~5%?
Shot-setup time reduction/multi-bunch proton injection	2008-09	~5%?
Scraping protons in MI	2008	~10%?
Pbar size dilution at collisions/B0 aperture increased	2008	5%?
Booster proton emittances reduced /P,A1lines tuneup	Apr 2010	10%?

Overall factor of 30 luminosity increase

26

ALICE and LHCb in the HL-LHC era

CHAMONIX 2011

January 27, 2011

Sergio Bertolucci
CERN

General considerations(2)

A number of issues of consistency/compatibility, which could not be addressed in sufficient details at the time(s) of approval, are resurfacing now and are keeping our LPC/LMC meetings lively.

Just to quote a few:

- Running 4 IP's with widely different running conditions
- p- A runs (approved and forgotten for a long time)
- **TOTEM**
- Long term upgrade scenarios

Long Term (HL-LHC)

So far all the upgrade schemes have been studied assuming **only two general purpose detectors**, ATLAS and CMS, operating.

Taking into account the changed scenario:

- ■Will **ALICE** and **LHCb** run in HL-LHC time?
- When and what process to decide it?
- What are the beam parameters they want to exploit and the hardware changes they need in case of an upgrade?

Not a trivial bunch of questions, considering the implications on the machine upgrade, on its ultimate performances, not to talk about the costs

In summary

- Once approved, experiments are very reluctant to be terminated.....
- ...usually for a number of good reasons, physics first.
- In the case of ALICE and LHCb, I think that both have good reason to think beyond 2020...
- ... also in consideration of the not overwhelming offer of new machines.
- I really hope (and I tend to believe) that new Physics will make the choice very easy!