

Outline:

- Motivation and Target Precision
- Methods
- 2010 Results
- 2011 Requests & Strategy
- High-β Experiments

S. White LHC Performance Workshop Chamonix, 27 January 2011

Acknowledgments: participants of the Lumi Days workshop for the fruitful and motivating discussions <u>http://indico.cern.ch/conferenceDisplay.py?confId=109784</u>

What is Luminosity?

• Gaussian bunches colliding head-on, no crossing angle:

$$A_{\rm eff} = 2 \ \pi \ \sqrt{\sigma_{x1}^2 + \sigma_{x2}^2} \ \sqrt{\sigma_{y1}^2 + \sigma_{y2}^2} = 2 \ \pi \ \sigma_{xeff} \ \sigma_{yeff}$$

The knowledge of the absolute luminosity is essential to normalize the experimental data:

$$L = \frac{N}{\sigma}$$

• Absolute luminosity measurements give a handle on:

⇒ Physics absolute cross sections: test the model, theoretical calculations
⇒ Measurement of the accelerator performance
⇒ Useful both for the machine and the experiments

Already dominated by the systematic uncertainty on the luminosity

Summary

- W and Z production cross sections are the hard process at the LHC with the best **intrinsic** precision (O(2%)).
- Thus 2% sets a natural benchmark scale for the target precision of the luminosity measurement at the LHC
- A complete assessment of the consequences of O(2-5%) measurements of W and Z production properties is under way (*).
- It is already clear, nevertheless, that a cross section measurement to better than 5% allows an improved determination of PDFs, with an indirect benefit for the measurements of the W mass, and improved predictivity for all other hard processes.

M. Mangano @ Lumi Days:

 \Rightarrow A measurement to better than 5% would start challenging the models

 \Rightarrow Ultimately aim for 2% , no clear interest to go below

• Several methods exist and were used or are planned to be used at the LHC:

 \Rightarrow Use a theoretically well known process: in e⁺ e⁻ collider: Bhabba scattering. In hadron colliders: W and Z production

 \Rightarrow Luminosity independent: elastic scattering of protons (TOTEM and ATLAS). Requires dedicated high- β optics, direct cross section measurement

⇒ Machine parameters: measure intensity + IP beam sizes

- Van der Meer method, scans in separation. Direct measurement of the overlap area

- beam imaging: reconstruct the individual beam profile from vertex data from p-p interaction (CMS/LHCb), or beam-gas (LHCb)

 \Rightarrow Find a clear and coherent picture comparing the results from all methods \Rightarrow Reach the % level with high- β experiments

Luminosity in the presence of transverse offsets:

$$\frac{L}{L_0} = \exp\left[-\frac{\delta x^2}{2 (\sigma_{x1}^2 + \sigma_{x2}^2)} - \frac{\delta y^2}{2 (\sigma_{y1}^2 + \sigma_{y2}^2)}\right]$$

Revolution frequency known with good accuracy, intensity measured with BCTs. The effective overlap area can be determined by scans in separation

X-axis : beam displacement Y-axis : any relative luminosity monitor

• Potential sources of systematic uncertainty:

- \Rightarrow Beam displacement scale
- \Rightarrow Bunch intensity measurements

 \Rightarrow Non stable beam conditions (emittance, orbit, ...)

⇒ Requires excellent performance of beam diagnostics and machine stability
 ⇒ Ideally performed at low beam-beam parameter

Beam Imaging

• First introduced by LHCb, can be done using p-p interaction profits from separation scans (LHCb/CMS), or beam-gas interaction with head-on collisions

- Potential sources of systematic uncertainty:
- \Rightarrow Bunch intensity knowledge
- \Rightarrow Vertex resolution: large beam sizes

⇒ Beam-gas: residual gas profile, beam-gas rates - integration over a long time: beam parameters stability – beams don't move can be done parasitically

- \Rightarrow **p-p:** complementary to VdM scans additional information on uncertainty
- \Rightarrow Desirable to perform during VdM fills for direct cross check
- ⇒ Low beam-beam parameter would help (but large beam sizes + high rates?)

Scale Calibration

• Dedicated measurements done to calibrate the orbit bump scale. Needs to be done only once for the optics used for the scans. Two methods used in 2010.

• ATLAS:

 ⇒ Shift the two beams colliding head-on transversally
 ⇒ Mini-scans at each point to compute Δ
 ⇒ Compare with luminous region displacement

•ALICE/CMS/LHCb:

⇒ Shift the two beams with constant offset ($\sqrt{2\sigma}$) transversally ⇒ Δ given by the slope in luminosity ⇒ Scale given by the displacement of the luminous region

• Both methods work equally well, agreement within 1%. ATLAS much longer.

Beam Intensity

• Both methods rely on a precise bunch intensity measurement. Several issues were addressed and are under investigation (See J. J. Gras @ Lumi Days, BCNWG).

• BCTDC, total beam intensity used as reference for absolute calibration:

- \Rightarrow 2011 target: reduce the error down to below 1% for next year
- BCTFR, bunch by bunch intensity
- \Rightarrow Achieved 1% relative uncertainty between bunches in October
- \Rightarrow Latest results: total uncertainty on the product N₁N₂ ~3%
- ⇒ 2011 challenge: properly estimate the satellite bunches and un-bunched population

 Longitudinal density monitor:
 ⇒Should provide
 the required
 information
 ⇒ To be
 commissioned as
 soon as possible

2010 Results

• Two sets of scans performed in 2010 at the four interaction points. Beam-gas imaging done for few selected fills

• Excellent results for a first experience:

- \Rightarrow Consistency between methods, fills, bunches and detectors
- \Rightarrow April-May scans gave a first calibration to 11% dominated by intensity uncertainty

 \Rightarrow Expect to reduce the uncertainty to ~5% in view of latest measurements (improved knowledge of the beam intensity, better beam stability)

 \Rightarrow 2011: aim for below 5%

• Hierarchy between cleaning stages must be preserved to guarantee protection limits orbit variation (R. Bruce @ Evian)

Example of an IP bump with and without MCBX: ⇒ Creates a large offset in the TCT region, cannot be avoided ⇒ MCBX magnets not used for luminosity optimization ⇒ Last year: split the amplitude between beams + loss maps with TCT closed by 25 with respect to reference settings

• Outcome of Evian, strategy for 2011:

⇒ **MUST move the TCT with the beam:** increased margin dump protection/TCT

 \Rightarrow Implementation done, tests required

⇒ **Does not prevent from breaking the TCT/triplet margin:** requires detailed study for each scenario, assess aperture reduction in the crossing angle plane

- General agreement: no trains, crossing angle on, bunch by bunch analysis (rates)
- ATLAS: $\mu \sim 1.5 2$, driven by low acceptance detector
- CMS: $\mu \sim 1$, large beam size, use p-p beam imaging method
- LHCb: $\mu \sim 1$, large beam size + pressure bump, use beam-gas imaging
- ALICE: $\mu \sim 0.1 0.5$
- Diverse (conflicting?) wishes:
 - \Rightarrow How do we accommodate these requests in one fill? Knobs are ϵ , β , N
 - \Rightarrow Large beam sizes + high rates \rightarrow high bunch intensity: not ideal to reach very high precision (beam-beam, non-linearity)
- Instrumentation: set priorities on BCTs and LDM. Emittances, BPMs also on the list
- Other requests: equalize emittances B1/B2 and bunch by bunch, minimize satellite bunches, more flexible software: scans driven by editable files, intermediate β^* , investigate hysteresis, coupling, parallel scans, longitudinal scans, etc...

⇒ Requires a lot of effort, developments, beam studies and time: set priorities
 ⇒ 2 fills requested - measurement early in the run if energy is changed

Parameter Space

- Limitations:
 - use standard optics, injection or physics, to reduce setup time
 - stay away from the BPM calibration switch, below or well above (no crossing during the fill)
- Assumptions:
 - normalized emittance $\sim 3.0~\mu m$
 - physics β^* : IP1/IP5 1.5 m, IP2 10 m, IP8 3.5 m

IP1: requested µ out of range for injection optics, too close to BPM calibration switch for physics optics
IP5: requested µ out of range for injection optics (large beam size)
IP2/IP8: requirements could be fulfilled in the same fill
⇒ Experiments requirements are too constraining to be accommodated within a single fill using standard optics
⇒ Different bunch intensities?
⇒ Squeeze only one IP?

• Remarks:

-2 special fills requested for VdM: balance setup time / measurements
-any exotic request (non standard operation) comes at a cost: avoid if possible
-rely on beam stability and linearity of the system: low beam-beam parameter
-reaching < 5% is (very) challenging: cannot rely on a couple of measurements,
are 2 fills really sufficient if the target is below 5%? Cross checks!

• Proposal (assuming 2 special fills):

- High precision: 1 fill for Van der Meer scans at physics optics and reduced bunch intensity < 5.0e10 p/bunch, minimal setup time</p>
- Vertex methods: 1 fill at injection optics (large beam size) with highest possible μ, assuming co-moving TCT, is full MP qualification for STABLE BEAM required? Collision tunes?
- Reproducibility: few end of fill scans, provide calibration at high μ (check extrapolation), no setup time, "parasitic", define conditions
- Comments:
 - -LHCb beam-gas method could also profit from the special high-β run
 - -ATLAS low acceptance detector can be cross calibrated with other signals

High-β **Experiments**

• Two experiments in the LHC, ATLAS (IP1) and TOTEM (IP5): determine the total p-p cross section from the measurement of elastic scattering angles

- Dedicated moveable detectors (Roman Pots) installed in both IRs
- "Parallel-to-point" focusing optics with (very) high β^*
- Expected precision on the cross section: few percents (1% ultimate)
- Independent from other methods different systematic uncertainties

TOTEM

dario Deile

• Independent measurement: \Rightarrow Challenge the machine parameters methods \Rightarrow Most needed cross check to get confidence on the 5% level

Longer term:

Measurement at the 1% level with very-high- β^* optics (~1 km); might give access to the ρ parameter if the energy is still low ($\sqrt{s} \sim 8 \text{ TeV}$); needs optics development work.

ATLAS - ALFA

• Status and roadmap: \Rightarrow ALFA Roman Pots are installed and ready to start commissioning \Rightarrow Start commissioning in garage position \Rightarrow Repeat the 2010 TOTEM exercise (alignment with collimators, etc..) \Rightarrow Expect to finish commissioning and be ready for physics at 90 m for summer Cross section

measurement: 5-7% level with 90 m optics

K. Hiller @ Lumi Days

13

High-β **Optics**

IP5 90 m optics - RP at 220 m from the IP

Status:
⇒ 90 m meter optics + unsqueeze in IP5 ready for commissioning
⇒ Settings imported in LSA (S. Redaelli, G. Muller)
⇒ IP1: same un-squeeze + optimization of the last steps

Constraints & requests:
 ⇒ Tune compensation
 ⇒ π/2 phase advance between IP
 and the detector
 ⇒ Very high precision optics
 measurements (Δβ/β ~ 1%)
 ⇒ Very challenging: start
 commissioning as early as possible

The tune change in the un-squeeze is much bigger than in the squeeze to low $\boldsymbol{\beta}$

H. Burkhardt @ Lumi Days

Physics & Commissioning Strategy

High- β in 2011 :

- 90 m optics commissioning concentrate on one goal in 2011, which is the 90 m optics;
 the commissioning should start in MD a.s.a.p and will tell us a lot about the feasibility of these optics and the requirements in terms of commissioning and set up time if things go really well : commissioning in 5 shifts, simultaneously 2 beams and IP 1&5 IP 2/8 left by default at 10m inj, r&s settings
- Physics operation at 90 m at the current physics energy, simultaneously in IP 1&5, in the 2nd part of the year, about a week, split in several parts

Commissioning: ⇒ IP1 & IP5 simultaneously ⇒ About 5 shifts Tune compensation: ⇒ First try with arcs (kqf, kqd)

Physics at 90 m:
 ⇒ Special runs, IP1 & IP5 simultaneously
 ⇒ 4 fills split in several parts
 ⇒ No crossing angle

(BPMWF), reduced emittance and luminosity per bunch three alternatives for the required tune adjust of $\Delta Qx = +0.222$, $\Delta Qy = +0.055$ / IP

- use another IP, for example IP4 advantage : local to IPs , no β-beating in arcs disadvantage : limited to ~0.2, no way to compensate 90 m in several IPs implications for instrumentation and damper in IP4
- use the trim quadrupoles, the tune adjust (of a single IP) results in up to 8.5% β -beat in x and 4.5% in y / IP

 ramp up the main quads during the un-squeeze to compensate the loss in tune proposed first by O. Brüning in LCCWG#4 on 19/4/2006 results in up to 4.5% β-beat in x and 1.6 % in y / IP

Summary

- Luminosity calibration is important and useful both for physics and the understanding of the machine performance
- Machine parameters methods:
 - \Rightarrow Very successful first experience, results went beyond expectations
 - ⇒ Expect to reach 5% accuracy for 2010, aim for <5% in 2011
 - ⇒ Special fills: 2 requested, conditions to be discussed, try to reduce setup time
 - ⇒ Developments & beam studies: a lot on the list, set priorities
 - ⇒ Hardware: lots of efforts already done and very much appreciated. Beam intensity measurements still limits the precision: set priority on the BCTs and LDM

• High-β experiments:

- \Rightarrow TOTEM is commissioned and ready for physics at 90 m
- \Rightarrow ALFA will start commissioning, expects to be ready for summer
- \Rightarrow Optics are ready for commissioning, operational challenges very different from squeezed optics: start commissioning as soon as possible (~5 shifts)
- ⇒ Direct cross section measurement independent from machine parameters: would provide a very useful (and required) cross check of other methods
- ⇒ Physics: 4 fills, expect to reach 3% accuracy on the cross section (TOTEM)