ERL Paper Status and Next Steps

Max Klein, Andrew Hutton

114 pages by today noon, work in progress despite IPAC and duties all have – many thanks!

Paper Status

Guest Authors

Michaela Arnold⁷, Steve Benson¹⁵, Jan Bernauer¹³, Maarten Boonekamp¹², Oliver Brüning⁴, Patxi Duthill¹¹, Oliver Fischer⁹, Bernhard Holzer⁴, Geoff Krafft¹⁵, Boris Militsyn⁶, George Neil¹⁵, Axel Neumann¹, Vladimir Litvinenko¹³, Bob Rimmer¹⁵, Nick Shipman⁴, Hubert Spiesberger¹⁰, David Verney¹¹, Valeri Telnov², Chris Tennant¹⁵ and others

Make sure your active colleagues appear here

Institutes

- ¹ Berlin HBZ
- ² BINP, Novosibirsk
- ³ Brookhaven National Lab
- ⁴ CERN
- ⁵ Cornell University
- ⁶ Daresbury (STFC)
- ⁷ TU Darmstadt
- ⁸ INFN Frascati
- ⁹ University Liverpool
- ¹⁰ University Mainz
- ¹¹ IJCLab Orsay
- ¹² CEA Saclay
- ¹³ Center for Frontiers in Nuclear Science, Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA and RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY, USA
- ¹⁴ KEK Tokyo
- ¹⁵ Thomas Jefferson Laboratory

ORAFIT

← And your institute name is right, please

1	Intr	oducti	ion - 5p	5
	1.1	The M	Magic Principle of Energy Recovery, its Promises and Past	6
			le Physics and the Importance of ERLs	
			rements to the Next Generation of ERLs	
2	ER	L - Fac	cilities and Current Status - 20p	9
	2.1	Comp	leted Facilities	11
			ALICE at Daresbury	
		2.1.2	JLab FEL	16
		2.1.3	CEBAF Single-pass Energy Recovery Experiment (CEBAF-ER)	17
	2.2	Ongoi	ng Activities	21
		2.2.1		
		2.2.2	bERLinPRO	
		2.2.3	cERL at KEK	27
		2.2.4	Recuperator at Novosibirsk	
		2.2.5	CBETA at Cornell	31

3	ERI	L - Ne	w Facilities in the Twenties - 20p	32
	3.1	Europ	e	34
			MESA at Mainz	
		3.1.2	PERLE at Orsay PERLE to be inserted	36
	3.2	Non-E	European Facilities	37
		3.2.1	CEBAF 5-pass Energy Recovery Experiment (ER@CEBAF)	38
		3.2.2	Electron Cooler at BNL	42

4	\mathbf{Key}	Challenges - a Concerted Effort - 30p	43
	4.1	Low Emittance High Current Sources	45
		4.1.1 Buncher and Booster	46
		4.1.2 Merger	46
	4.2	Challenges of SRF Cavities and Cryomodules	48
		4.2.1 Challenges of SRF Cavity and Cryomodules	48
	4.3	Multi-turn ERL Operation and the Art of Arcs	69
		4.3.1 Multi-pass ERL	69
		4.3.2 'Racetrack' Topology ERL	69
		4.3.3 'Dogbone' Topology ERL	69
	4.4	ERL Operation Challenges	73
		4.4.1 Introduction	73
		4.4.2 Challenges	73
		4.4.3 Space Charge	73
		4.4.4 Beam Breakup Instability	73
		4.4.5 Coherent Synchrotron Radiation	74
		4.4.6 Microbunching Instability	74
		4.4.7 Halo	74
		4.4.8 RF Transients	74
		4.4.9 Wakefields and Interaction of Beam with Environment	75
		4.4.10 Magnet Field Quality	75
		4.4.11 Multi-turn, Common Transport	75
		4.4.12 REFERENCES	75
	4.5	Interaction Region	77
	4.6	Power to ERLs	78
	4.7	Cryogenics	79

5	Ene	gy and Intensity Frontier Physics - 30p	80
	5.1	High Energy Colliders	82
		5.1.1 LHeC and FCC-eh	83
		5.1.2 Interaction Region of LHeC and FCC-eh	84
		5.1.3 FCC-ee as an ERL	86
		5.1.4 ILC as an ERL	
		5.1.5 Photon-Photon Collider	88
	5.2	Low Energy Particle Physics	89
		5.2.1 Elastic Electron-Hadron Scattering	90
		5.2.2 Weak Interaction at Low Energy	93
		5.2.3 Dark Photons	95
	5.3	Low Energy Nuclear Physics expected soon	96
		Photo-Nuclear Physics next-week	

6 Applications - 15p			98		
	6.1	ERL Driven High Power FEL	. 101		
	6.2	EUV-FEL Semiconductor Lithography	. 102		
		ICS Gamma Source			
7 ERL and Sustainability - 10p In progress, calculations this week					
	7.1	Introduction	. 110		
		7.1.1 Power consumption	. 110		
	7.2	Beam Energy Recovery	. 110		
	7.3	Technology and Infrastructure	. 111		
8	Cor	nclusions - 5p	112		
g	Δnr	nendix - ERL Facilities - 5p Tables to be inserted commented+checked	114		

The paper is indeed converging very well, it needs two more intense weeks and cross reading to have a reliable base for 4.6.

4. June - Symposium on ERLs

Present the ERL development to the community at large. At this stage: mainly present the White Paper, and look for comments.

Agenda for ERL Symposium (tbc today)

13:00	
Opening	10' Dave N
Introduction	10' Max K
Facilities	20' Andrew H
High Intensity Sources	20' Boris M
SCRF Developments	20' Bob R
short break 10'	
	20' Oliver B
Low Energy Physics with ERL	20' Jan B
Industrial Applications	20' Peter W
Energy Recovery and Sustainability	20' Erk J
16:00	

Discussion

chair Max or Andrew

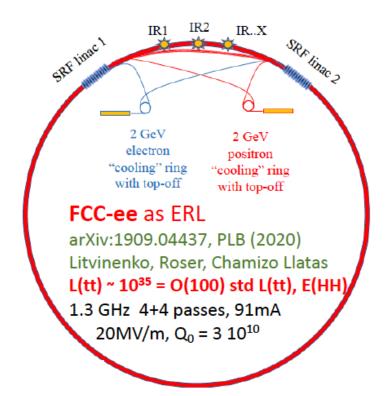
Webster's New Encyclopedic Dictionary

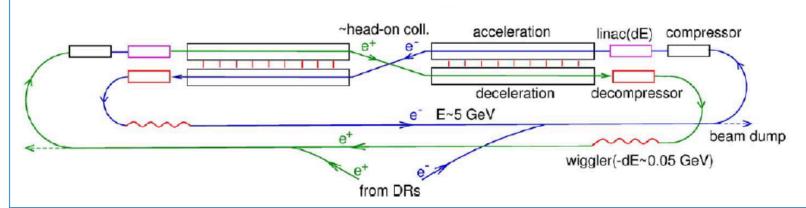
```
sym·po·si·um \sim-'pō-zē-əm also -zhē-əm, -zhəm\n, pl·sia \-zē-ə, -zhē-ə, -zhə\ or -si·ums | : a formal meeting at which several speakers deliver short addresses on a topic or on related topics 2 a: a collection of opinions on a subject b: Discussion 2 [latin, "drinking party after a banquet", from Greek symposion, from sympinein "to drink together", from sympinein "to drink together", from sympinein "to drink together", from sympinein "to drink"]
```

Date: Friday 4. June 13-17 o'clock CEST

Invitation via several mailing lists

- ERL Atoosa Meseck
- rECFA Max [national contacts]
- EP CERN (Manfred Krammer)
- Any other?


ZOOM, recorded


The e⁺e⁻ SubPanel

Have two ERL proposals with major impact on future e+e- collider(s). LDG re-emphasised the expectation that our report was reliable evaluation regarding their promises/prospects and required R+D

We thus agreed with David Newbold (following our meeting 6.5.) To establish a sub-panel on these recent proposals, not on ep as this has been scrutinised and developed over a decade now.

This is NOT about any decision or preference but a technical evaluation.

ILC as ERL

V. Telnov at LCWS 3/2021 in preparation L(ERL) ~ 10^{36} = O(100) std L(ILC) This yields O(10^7) HZ events in 3 years. 1+1 passes, I = 160m f=750 MHz, 20MV/m, Q₀ > 10^{10} Goal: Evaluate two new proposals for high energy e⁺e⁻ Colliders: Vladimir Litvinenko et al),

https://doi.org/10.1016/j.physletb.2020.135394; and Valery Telnov,

https://indico.cern.ch/event/995633/contributions/4275159/attachments/2208757/3755756/telnov-lcws21.pdf

The sub-Panel should evaluate the technical and financial implications of the two proposals compared to the FCC-ee and ILC projects.

What are the technical advances, specifically in luminosity?

What are the technical obstacles requiring R&D?

What is the rough cost implication (to about 10%)?

Sub-Panel members

Reinhard Brinkmann (DESY)

Oliver Brüning (CERN)

Alex Chao (SLAC),

Andrew Hutton (Jefferson Lab) - Chairperson

Sergei Nagaitsev (Fermilab)

Max Klein (Liverpool)

Peter Williams (STFC) in confidence

Akira Yamamoto (KEK)

Frank Zimmerman (CERN)

The e⁺e⁻ SubPanel

Dates for the sub-Panel:

Kick-off meeting mid-June 2021 Completion by September 3, 2021

Deliverable:

A short report (`20 pages) detailing the conclusions of the evaluation, which should be agreed and supported by the entire sub-Panel and published as an Appendix to the full Panel report.

Methodology: being worked out

Sessions open to ERL panel members
Procedure and Chair agreed with
Dave Newbold (LDG) and the proponents
Valeri Telnov, Vladimir Litvinenko et al

Further

Further steps: post Symposium and long write-up:

common workshop (LDG) – June, no date yet

EPS conference

Preparation of genuine roadmap (needs new interaction with LDG, but draft 30-40p we have to have by summer)