

SUSY Searches at CMS

2011 Aspen Winter Conference on Particle Physics February 12 - 18, 2011

> Roberto Rossin UC Santa Barbara On behalf of the CMS collaboration

17/02/2011 Aspen R. Rossin

- SUSY has many virtues:
 - solves the hierarchy problem, provides Dark Matter candidates, has a better unification of couplings, ...
- And (at least) one vice:
 - We do not know if it is there.
 - And if it is, which flavour of it.
- So we look. Everywhere.
- In this talk. First results from CMS on 35pb⁻¹ data:
 - Jet+MET
 - Di-photon + MET
 - Di-lepton (OS) + MET

Jet+MET [SUS-10-003]

- The problem
- The variable $\alpha_{_{T}}$
- The background estimations
 - Inclusive
 - W+jets/ttbar and Z-> $\nu\nu$
- Results

2500

Events collected with a H_{τ} trigger: $- H_{\tau}^{trigger} > 150 GeV$

$$H_T = \sum_{i}^{N_{jet}} E_T^{j_i}$$

- Offline preselection based on calorimetric jets
 - >= 2jets
 - E_T(j₁,j₂)>100GeV
 - |η|<2.5
 - Other jets
 - E_⊤(j)>50GeV
 - |η|<3.0
 - $H_{\tau} > 350 \text{GeV}$
 - Veto events containing:
 - Isolated leptons with p_{τ} >10GeV
 - Isolated photons with E_{τ} >25GeV
- After preselection the spectrum looks like this
 - We have a problem

- Proposed in [Randall]
- Dijet definition

$$\alpha_T = E_T^{j_2} / M_T$$

• 2 pseudo jets w/ min(ΔH_T)

$$\alpha_T = \frac{1}{2} \frac{H_T - \Delta H_T}{M_T}$$

- Features:
 - Events w/ no "intrinsic" MET have α_{T} =0.5
 - Jet resolution effects induce a migration to $\alpha_{\! \tau} \! < \! 0.5$
 - Spillover at α_{T} >0.5 due to:
 - Remnant QCD from severe energy mismeasurement.
 - E.g. due to dead towers in the electromagnetic calorimeter
 - Several low $\mathsf{E}_{_{\!\mathsf{T}}}$ jets conspiring
 - Processes w/ genuine MET

• The QCD contribution is mostly below α_{τ} =0.5 with a drop by 4-5 orders of magnitude between 0.5 and 0.55.

• After all the selections are applied, the signal region is defined with $\alpha_{\! T}\!>\!0.55$

Selection	Data	SM	QCD multijet	$Z \to \nu \bar{\nu}$	W + jets	tī
$H_{\rm T} > 250{\rm GeV}$	4.68M	5.81M	5.81M	290	2.0k	2.5k
$E_{\rm T}^{j_2} > 100 {\rm GeV}$	2.89M	3.40M	3.40M	160	610	830
$H_{\rm T} > 350{\rm GeV}$	908k	1.11M	1.11M	80	280	650
$\alpha_T > 0.55$	37	30.5±4.7	$19.5 {\pm} 4.6$	4.2 ± 0.6	$3.9{\pm}0.7$	2.8±0.1
$\Delta R_{ m ECAL} > 0.3 \lor \Delta \phi^* > 0.5$	32	$24.5 {\pm} 4.2$	$14.3 {\pm} 4.1$	$4.2 {\pm} 0.6$	$3.6 {\pm} 0.6$	$2.4{\pm}0.1$
$R_{ m miss} < 1.25$	13	9.3±0.9	$0.03 {\pm} 0.02$	$4.1 {\pm} 0.6$	$3.3 {\pm} 0.6$	$1.8{\pm}0.1$

- The MC simulation predicts yield in good agreement with the data and suggests that:
 - No QCD events survived
 - Z/W/ttbar are all important contributions
 - With $W \rightarrow \tau \nu (\tau \rightarrow hadronic)$ or $W \rightarrow (e,\mu)\nu$ and e,μ not vetoed
- Still, use two independent data driven approaches to estimate all of them.

17/02/2011 Aspen R. Rossin

- Estimation of the combined $\mathbf{R}_{\mathbf{a}_{\top}}$ **Data**, α_τ > 0.51 CMS background using the $\alpha_{\!\tau}$ ratio 10⁻¹ O SM, α_τ > 0.51 L dt = 35 pb⁻¹, \s = 7 TeV ▲ Data, α_T > 0.55 \triangle SM, $\alpha_{T} > 0.55$ $(R_x = N_{\alpha T > x} / N_{\alpha T < x})$ from low H_T \star W $\rightarrow \mu v$ + jets 10⁻² control regions - 250 < H $_{\rm T}$ < 300 GeV and 10⁻³ $300 < H_{\tau} < 350 \text{ GeV}$ Measure R_{χ} VS H_{τ} in data & MC 10^{-4} X=0.51 is monotonically falling as expected from QCD 10°250 300 350 400 X=0.55 is flat, no QCD H_{T} (GeV) * Confirmed in a data W sample R_{0.55}(HT350) estimated from the $R_R = \frac{R_{0.55}(HT300)}{R_{0.55}(HT250)} = \frac{R_{0.55}(HT350)}{R_{0.55}(HT300)}$ constant double ratio R_R Robustness check in MC: •
 - extreme changes in the EWK cross-sections

The EWK backgrounds are also separately measured in two data control samples

- $W \rightarrow \mu \nu$ control sample to predict W+jets/ttbar
 - A pure W $\rightarrow\mu\nu$ +jets sample selected on data.
 - Yields predicted by the MC in good agreement in several ${\rm H_{\scriptscriptstyle T}}$ regions
 - W/ttbar background in the signal (=hadronic) region predicted by MC translation

 $N_{\rm data}^{\rm W; \ had} = N_{\rm MC}^{\rm W; \ had} / N_{\rm MC}^{\rm W; \ \mu} \times N_{\rm data}^{\rm W; \ \mu} \approx 0.86 \times N_{\rm data}^{\rm W; \ \mu}$

– Also the $Z \rightarrow vv$ is estimated using this sample

- γ +jets control sample to predict Z \rightarrow vv+jets
 - At high $p_{_{T}}$ the Z/ γ cross-section ratio flattens out
 - Select events with high $\boldsymbol{p}_{_{T}}$ isolated photons
 - Use MC to correct for the cross-section ratio and acceptance

Jet+MET summary

Background source	Method	Result	Total
Inclusive	Monte Carlo		9.3 ± 0.9
Inclusive	DD: R_R		$9.4^{+4.8}_{-4.0} \pm 1.0$
$W/t\bar{t}$	DD: $W \to \mu \nu$	$6.1^{+2.8}_{-1.9} \pm 1.8$	
$Z \to \nu \nu$	DD: γ +jets	$4.4^{+2.3}_{-1.6} \pm 1.8$	
Sum			$10.6^{+3.6}_{-2.5} \pm 2.5$
Data			13

- The two data driven (DD) methods are in good agreement between themselves
 - and with the MC expectation
 - Confirm that QCD is negligible
- Good agreement with the data (unfortunately)
- Both data driven results are used as input in the limit calculation.
- Can exclude with 95% CL points which yields more than 13.4 events

- Observed and expected limits in the $m_0 - m_{1/2}$ plane for

 $\tan\beta=3, A_0=0, \mu>0$

- Signal contamination in the background estimations, accounted for.
- Limits weakly dependent on value of tanβ
- In the same plot Tevatron limits w/ 2fb⁻¹:
 - CDF w/ tan β =5, μ <0
 - D0 w/ tan β =3, μ <0

Photons+Jet+MET [SUS-10-002]

- Event selection
- Background estimations
 - EWK
 - QCD
- Results and limits

- Events collected by single and double photon triggers

 SinglePhoton30 and DoublePhoton22
- Offline selections:
 - Two (or more) photons candidates in the ECAL with
 - E_T>30 GeV
 - |η|<1.4
 - Shower shape, Hadronic/EM and ECAL, HCAL, Track Isolation requirements applied
 - One (or more) jet with:
 - E₁>30 GeV
 - |η|<2.6
 - $\Delta R(j,\gamma) > 0.9$ for at least one of the jets
 - Jets defined with the Jet Plus Track algorithm [JPT]. Calorimeter response is corrected by the pT of the tracks

- Electroweak (real MET)
 - Irreducible:
 - $Z\gamma\gamma$, $W\gamma\gamma$, negligible at these luminosities
 - Electron mis-identification
 - Wy, W+jet with W decaying to electron that is mis-ID'ed as γ
- Fake MET
 - Mostly QCD ($\gamma\gamma$, γ +jet, multijet)
- Non-beam negligible after the jet requirement
 - cosmic muons' bremsstrahlung
 - beam halo muons' bremsstrahlung

- This background has a $W \rightarrow ev$ plus a real or fake photon. It involves electron-photon mis-identification.
 - By design electrons and γ differ only by a pixel matching requirement
 - Measure the electron- γ mis-ID rate $f_{e\gamma}$ (=1.4±0.4%) by

counting Z events in the ee, $e\gamma$, $\gamma\gamma$ samples

• Scale the $e\gamma$ +(jets) sample by $f_{e\gamma}$ /(1- $f_{e\gamma}$) to get the EWK background contribution in the $\gamma\gamma$ +(jets) - 43 events in $e\gamma$ +(jets)

- Fake MET is mostly due to the hadronic component of the event
 - The EM energy resolution is much higher, everything is determined by hadronic recoil

Idea

- Find sample with two EM objects and no true MET
- Re-weigh it so that the di-EM ${\rm E}_{\rm T}$

matches the signal sample

- After EWK subtraction
- Two control samples used:
 - Fake-fake (ff). A fake is defined as a photon that fails either the shower shape or track isolation.
 - dominated by QCD events w/ two "photon-like" jets
 - e⁺e⁻ with 70<M(ee)<110 GeV</p>
 - Dominated by $Z \rightarrow ee$

17/02/2011 Aspen R. Rossin

Backgrounds

- Re-weigh the ff and ee samples to match the di-EM pT spectrum shape of the $\gamma\gamma$ sample \rightarrow provides the E_T^{miss} templates
- Normalize the templates in the E_{T}^{miss} < 20 GeV region
 - negligible SUSY contribution there
 - \rightarrow provides the full E_{T}^{miss} spectrum

Results

Туре	Number of	stat	reweight	normalization
	events	error	error	error
$\gamma\gamma$ events	1			
Electroweak background estimate	0.04 ± 0.03	± 0.02	± 0.0	± 0.01
QCD background estimate (ff)	0.49 ± 0.37	± 0.36	± 0.06	± 0.07
QCD background estimate (ee)	1.67 ± 0.64	± 0.46	± 0.38	± 0.23
Total background (using <i>ff</i>)	0.53 ± 0.37			
Total background (using ee)	1.71 ± 0.64			

- One observed event in the signal region ($E_T^{miss} > 50 \text{ GeV}$)
- The total background estimation is 1.2 ± 0.8 events from the average of ff and ee method, plus the e γ
- The uncertainties are due to:
 - Statistical uncertainties of the control samples
 - Statistical uncertainty on the di-EM distribution used for reweighing
 - Stat uncertainty on the normalization in E_t^{miss} < 20 GeV

M(g)-M(q) GGM limits

Opposite sign dileptons+Jet+MET [SUS-10-007]

- Event selection
- Data/MC comparison
- Background estimations
 - ABCD
 - P_T(II)
- Results

- Events collected by single and double-lepton triggers.
 - Efficiency>99%
- Preselection:
 - 2 isolated leptons with opposite charge (e⁺e⁻, e[±] μ [±], μ ⁺ μ ⁻)
 - $p_T(I_1) > 20$ GeV, $p_T(I_2) > 10$ GeV, Veto ee/µµ pairs in Z mass window
 - 2 jets (jet+tracks) with $p_{_{T}}$ > 30 GeV, $|\eta|{<}2.5$
 - Separated from the leptons by $\Delta R > 0.4$
 - $H_T > 100 \text{ GeV}, E_T^{\text{miss}} > 50 \text{ GeV}$
- Monte Carlo and data yields in very good agreement

-	Sample	Sample ee		еµ	eµ tot	
	$t\bar{t} ightarrow \ell^+ \ell^-$	14.50 ± 0.24	17.52 ± 0.26	41.34 ± 0.40	73.36 ± 0.53	
	$t\bar{t} \rightarrow other$	0.49 ± 0.04	0.21 ± 0.03	1.02 ± 0.06	1.72 ± 0.08	
	$Z^0 \to \ell^+ \ell^-$	1.02 ± 0.21	1.16 ± 0.22	1.20 ± 0.22	3.38 ± 0.37	
	W^{\pm} + jets	0.19 ± 0.13	0.00 ± 0.00	0.09 ± 0.09	0.28 ± 0.16	
	W^+W^-	0.15 ± 0.01	0.16 ± 0.01	0.37 ± 0.02	0.68 ± 0.03	
	$W^{\pm}Z^0$	0.02 ± 0.00	0.02 ± 0.00	0.04 ± 0.00	0.09 ± 0.00	
	Z^0Z^0	0.01 ± 0.00	0.02 ± 0.00	0.02 ± 0.00	0.05 ± 0.00	
	single top	0.46 ± 0.02	0.55 ± 0.02	1.24 ± 0.03	2.25 ± 0.04	
17/02/2011.	total SM MC	16.85 ± 0.34	19.63 ± 0.34	45.33 ± 0.47	81.81 ± 0.67	
	data	15	22	45	82	

Data/MC comparisons – signal selection

MC describes well the data in various distributions

- Define the signal region with the further requirements: $H_T > 300 \text{ GeV}$ and $y := E_T^{\text{miss}} / \sqrt{H_T} > 8.5 \text{ GeV}^{\frac{1}{2}}$
- one event is left in the data
 - Consistent with 1.3 events predicted by MC

Developed two independent data-driven methods to estimate the ttbar background in the signal region

- + First: ABCD method in the y vs $\rm H_{T}$ plane
 - H_T and y are basically uncorrelated for tt→dilepton
- Second: in dilepton ttbar events the I and v from W have similar P_{τ} spectra [MET_VplusJets]
 - Except for W polarization effects
 - Use the observed $P_T(II)$ distribution to model $P_T(vv)$
- Finally check that the backgrounds from fake leptons are negligible.
 - Sources: leptons from b or c, muon decays, pions misID as electrons
 - Estimated in events with one lepton tight, one loose
 - =Fakeable Object
 - Weigh events with FR/(1-FR) with FR(P_T, η). See [ttbar-dilepton].
 - Zero events expected, assumed $0.00^{+0.04}$

ABCD background predictions

- This method relies on the $P_T(II)$ distribution to get $P_T(vv)$
- A couple of corrections are needed to account for:
 - The dilepton event selection includes a $E_T^{miss} > 50$ GeV.
 - The Ws from top decay are polarized \rightarrow the vs carry on average a larger momentum than the I.
 - These two effects are well modelled by MC and a correction factor can be derived. $K = 2.1 \pm 0.6$
- Closure tested in region A

 $(125 < H_T < 300 \text{ GeV and } y = E_T^{\text{miss}} / \sqrt{H_T} > 8.5 \text{ GeV}^{\frac{1}{2}}) \stackrel{\text{stars}}{=} 5 \text{ events in the A' region}$

- 5 events in the A' region
 - $(E_T^{\text{miss}}/\sqrt{H_T} \rightarrow P_T(II)/\sqrt{H_T})$
- Subtract expected DY there: $N_{DY} = 1.3 \pm 0.9$
- Predicted: $N_A = K \cdot (N_{A'} N_{DY}) =$ 9.0±6.0. Observed=12

P_{T} (II) background prediction - Summary

- Finally the method is applied in (signal) region D and (D')
 - 1 event in D' region

- Predicted:
$$N_D = K \cdot (N_{D'} - N_{DY})$$

 $=2.1\pm2.1(stat)\pm0.6(syst)$

- Background summary
- Observed yield: 1 event
- MC predicts: 1.3 events
- ABCD method predicts: 1.3 ± 0.8 (stat) ± 0.3 (syst) events
- $p_T(II)$ method predicts: 2.1 ± 2.1 (stat) ± 0.6 (syst) events
- Weighted average of the two DD predictions: 1.4±0.8

- Limit on signal yield:
 4.1 events at 95% CL
 - mSUGRA limits: – Uncertainties and signal contamination fully accounted for

Eff^{ID}_{μ}	pprox 95%
$Eff_e^{ID}(10GeV)$	pprox 63%
$Eff_e^{ID}(> 30GeV)$	$\approx 91\%$
$Eff^{Iso}_{\mu}(10GeV)$	$\approx 83\%$ in $t\bar{t}$
$Eff^{Iso}_{\mu}(>60GeV)$	$\approx 95\%$ in $t\bar{t}$
$Eff_e^{Iso}(10GeV)$	$\approx 89\%$ in $t\bar{t}$
$Eff_e^{Iso}(>60GeV)$	$\approx 95\%$ in $t\bar{t}$
	$\approx 5 - 10\%$ lower in LM0
H_T response	1.02 ± 0.05
y response	0.94 ± 0.05

 Additional information to facilitate generator-level studies.

- How to maximize the information content of our papers?
 - mSUGRA limits
 - pMSSM limits
 - Efficiencies and detector responses
- Also:
 - describe discoveries and exclusions in terms of simplified models. Decouple all mass parameters, couplings, etc.
 - See workshop "Global BSM fits and LHC data", Feb 10-11
 - http://indico.cern.ch/conferenceOtherViews.py?view=standard&confld=118137
 - "CMS: progress on searches using simplified models", W.
 Waltenberger

Conclusions

- With just 35 pb⁻¹ of data CMS entered into new territory
- Performed searches with $E_{\!\!T}^{_{\rm miss}}$ signatures in a variety of final states
 - Extended previously explored range of model parameters
- Many more to follow
- Before the 2013 shut-down LHC will deliver O(fb⁻¹) of data.

No more "limits" this/next year?

Backup/References

- Further protection from severe energy loss is achieved by removing events with:
 - Jets falling into an ECAL masked tower
 - Multiple jets failing the E_{τ} >50GeV requirement.

• Event is rejected if
$$R_{miss} = H_T / E_T^{calo} > 1.25$$

R. Rossin

• The variable:

$$\Delta \phi^* = \min_k \left(\Delta \phi \left(\left(\sum_{i=0}^n -\vec{j}_i \right) + \vec{j}_k; \vec{j}_k \right) \right)$$

- is the (minimal) azimuthal distance between the jets and their recoils.
- The jet which minimizes $\Delta \phi^*$ is likely the one which gave the largest contribution to

$$\vec{H}_T = -\sum_{jets} \vec{p}_{T_{jet}}$$

• Events with $\Delta \phi^* < 0.5 \text{ AND } \Delta R_{_{ECAL}} < 0.3 \text{ are rejected}$ $- \Delta R_{_{ECAL}}$ is the distance between the selected jet and a ECAL masked tower

- [Randall]
 - L. Randall and D. Tucker-Smith, "Dijet Searches for Supersymmetry at the LHC", Phys. 505 Rev. Lett. 101 (2008) 221803. doi:10.1103/PhysRevLett.101.221803.
- [JPT]
 - "Jet Performance in pp Collisions at sqrt(s)=7 TeV", CMS Physics Analysis Summary 182 CMS-PAS-JME-10-003 (2010).
- [ttbar-dilepton]
 - CMS Collaboration, "First Measurement of the Cross Section for Top-Quark Pair Production in Proton-Proton Collisions at sqrt(s)=7 TeV", Phys.Lett. B695 (2011) 424-443.
- [MET_VplusJets]
 - "Modelling missing transverse energy in V+jets at CERN LHC". V. Pavlunin, (UC, Santa Barbara), Phys.Rev.D81:035005 (2010).