THEORY OVERVIEW: CHANGING (EXCITING?) TIMES

Lisa Randall Aspen Winter Conference, 2011

Promise

Large Hadron Collider

- Explore weak energy scale
- Nothing replaces studying as high energy as possible!

Dark Matter Experiments

- On Ground and in Space
- Direct and Indirect
- CMB, Dark Energy, Black Holes
- Gravity Waves

Where Are We Now?

- LHC working as well as can be hoped
 - Repeatedly achieving new milestones
 - Experiments working in an unprecedented manner at turn-on
- Dark matter searches constantly improving
 - Searches from different directions
 - Synthesizing information from new regimes

Progress in Last Year

- Dark Matter Searches and Models
- Light Dark Matter
- New Ideas for Dark Matter Candidates
 - Motivated by anomalies
 - Motivated by theoretical insights

Progress in the last year

- Experiment: stuff ruled out some light Higgs models
 - Light susy, light black holes
- New recognition of early LHC BSM capacity
 - Wide resonances **
 - Long-lived hadrons
- Jet physics
 - General cleaning up of events
 - Precision with jet physics
 - Higgs-> bbbar
 - ISR tagging **
 - Kinematic handle

Higgs Should be Within Reach

Challenge to establish its properties Measure as much as possible Can we tell it's a Higgs?
Can we decide if it's part of a more complicated Higgs sector?

More progress

Dark Matter

- New classes of models **
- New "coincidences"
 - $\neg \rho B \sim \rho DM$
- Lots of new models
 - Some new signatures
 - Some new challenges

Past Year's Progress I: Wide Resonances

With Brian Shuve, Randall Kelly

- Resonances will be first and simplest place to look
- Particularly Drell-Yan processes with decays to muons
 - Background well understood
 - Low background at high invariant mass
- Useful for models
 - -Z'
 - RS
 - Understanding detector and experiment reach

RS X-sections (varying mass)

 $k/M_{Pl} = 0.35$

RS X-sections (varying k/M_{Pl})

 $M_G = 2 \text{ TeV}$

On vs Off Resonance

On peak:

$$\hat{\sigma}(M_{\rm g}^2) \sim \frac{1}{M_{\rm g}^2}.$$

Off peak-need to integrate against parton distribution Estimate using narrow width.

$$\frac{1}{(\hat{s}-M_{\rm g}^2)^2+M_{\rm g}^2\Gamma^2}\approx\frac{\pi}{M_{\rm g}\Gamma}\delta(\hat{s}-M_{\rm g}^2)$$

$$\sigma \sim \frac{(k/M_{\rm Pl})^2}{s} \frac{d\mathcal{L}}{d\tau}(M_{\rm g}^2, s).$$

Favors wide states, large k/M, Resonance mass through luminosity

Wide Resonances

Figure 2: Plots showing contours of constant cross section for the first KK mode of the graviton in RS models as a function of the curvature $k/M_{\rm Pl}$. The width of the corresponding resonance is also shown. The cross sections are shown for $\sqrt{s} = 7$ TeV (left), 10 TeV (center), and 14 TeV (right). Legend: green is 1 pb, blue is 100 fb, orange is 10 fb, purple is 1 fb, brown is 100 ab. The black curve indicates the cross section for 5 events at certain benchmark luminosities: 1 fb⁻¹ at 7 TeV, 10 fb⁻¹ at 10 TeV, and 100 fb⁻¹ at 14 TeV. The red lines are bounds from

- Understand reach of various LHC parameters
- When does LHC beat Tevatron, even in early run
 - High mass
 - Resonances from glue-glue initial state
 - Wide resonances
- Focus on wide resonances
 - Especially important since large coupling needed for sufficient event rate at low luminosity
- When can we see resonances?
- When can we distinguish them from contact interactions?
- Can we learn about nature of interaction that produced resonance?

Focus

- *Shape* of distribution
- For much of parameter space can distinguish broad resonance from featureless falling distribution (SM or SM +contact)
- Simple: look for "upturn" or absolute rise in rate
- More sophisticated statistical analysis
 - Use both excess events in some bins and absence in others
- Binned maximum likelihood analysis

Results

Can we learn more?

- Seems reasonable event rate
- And distinguishable
- We've considered total cross section and distribution with energy so far
- With enough statistics, angular information can also prove valuable

- In particular, can distinguish parity-violating interactions
- SM interactions violate parity whereas new physics does not necessarily

- In particular, can distinguish parity-violating interactions
- SM interactions violate parity whereas new physics does not necessarily

Pseudorapidity distribution

Interpretation

- Muon preferentially forward (wrt quark) due to parity violating SM interactions
- Quark has on average more momentum (larger x) therefore boosted more forward
- Large η, small θ, large cos θ
- Sum curves and get the McD curve
- Wider with less hard invariant mass cut

RS model

Separation of Distributions in Ellipticity

Better at Higher Energy

Wide Resonances

- Large cross section
- Distinctive shape wrt energy
- Distinctive wrt pseudorapidity
- Very promising

II: Progress Initial State Radiation (ISR) Tagging

- w/Krohn, Wang
- ISR produced due to standard QCD process at proton-proton collider
- Radiation tells us nothing about new physics (or weak interactions)
- Just QCD messiness
- Or???

Example

Initial State Radiation

- Seems a nuisance
- More complicated
 - More radiation
 - Initial and final state
 - Additional jets
 - Can contaminate existing jets
 - Or
 - Be their own jet

- Either way
 - seems like a nuisance
- But we show
- If you can identify it in BSM processes, valuable kinematical information

Example: Disquark production

Can use Identify and Use ISR

- We show
 - Distinctive
 - Carries valuable kinematical information

First step: Identify ISR

Tagging Procedure

- Tag
 - Take three hardest jets. Look for those
 - 1. Distinguished in pT

DR

2. Distinguished in rapidity

DR

3. Distinguished in m/pT

- Check
 - * Require the candidate ISR jet
 - 1. Not be central

AND

- Remain somewhat isolated in rapidity
- And, require that the implicit FSR jets be
 - 1. Close in pT

$$\frac{\max(p_{Ti}, p_{Tj})}{\min(p_{Ti}, p_{Tj})} > 2 \ \forall \ j \neq i$$

$$|y_i - y_j| > 1.5 \ \forall \ j \neq i$$

$$\frac{\max(\Delta_i, \Delta_j)}{\min(\Delta_i, \Delta_j)} > 1.5 \ \forall \ j \neq i$$

$$|y_i| > 1.$$

$$|y_i - y_j| > 0.5 \; \forall \; j \neq i$$

$$\frac{p_{Tj}}{p_{Tk}} < \rho + \frac{1/2}{1 - \alpha}$$

$$\alpha = \frac{\min(p_{Ti}, \cancel{E}_T)}{\max(p_{Ti}, \cancel{E}_T)}$$

Finally, the implicit FSR jets must be somewhat central: $|y_j| < 2 \ \forall \ j \neq i$

Works very well

Spectrum		Efficiencies [%]	
$m_{\tilde{q}}/m_{\tilde{g}}$	m_{LSP}	Trigger	Mistag
$500~{ m GeV}$	$100~{ m GeV}$	42	15
$500~{ m GeV}$	$450~\mathrm{GeV}$	42	12
1 TeV	$100~{ m GeV}$	41	11
1 TeV	$950~{ m GeV}$	41	9
$500~{ m GeV}$	$100~{ m GeV}$	13	22
$500~{ m GeV}$	$400~{ m GeV}$	15	10
1 TeV	$100~{ m GeV}$	12	25
1 TeV	$900~{ m GeV}$	16	8

Next step: use kinematics to find mass of squark that gives correct boost to balance transverse momentum (assumes near on-

Determining mass by boost

- Boost along longitudinal direction to get visible momentum in new frame
- Boost along transverse direction parallel to ISR jet to compensate for ISR
 - Requires assumption of system's mass
 - Assume squarks nearly onshell at production
- Measure projection of visible momentum along ISR direction
 - Correct boost there should be no net projection

Reconstructed characteristic center-of-mass energy

We determine mass at 20% level! Independent lyof LSP mass, decay chain

FIG. 1. The average sign of the FSR projection along the transverse ISR direction for, proceeding left to right, di-squark production using $m_{\tilde{q}} = 500$ GeV, $m_{\tilde{q}} = 1$ TeV, and then di-gluino production with $m_{\tilde{g}} = 500$ GeV, $m_{\tilde{g}} = 1$ TeV, with the LSP mass indicated in the legends. The position at which the points intersect $\langle \sigma \rangle = 0$ is what we would identify as $m_{\rm BSM}$, i.e. it where the FSR momenta are balanced because the boost is 'correct'. We see that it is in general close to $2m_{\tilde{q}/\tilde{g}}$. Note that the errors indicated are just the statistical errors associated with our Monte Carlo sample sizes.

Progress III: New Dark Matter Models

w/Matt Buckley

WIMP "Miracle"

$$\Omega_\chi h^2 = \frac{m_\chi n_\chi}{\rho_c} \simeq 0.1 \left(\frac{3 \times 10^{-26} \, \mathrm{cm}^3 \, \mathrm{sec}^{-1}}{\langle \sigma_A v \rangle} \right)$$

$$\sigma_{
m weak} \simeq rac{lpha^2}{m_{
m weak}^2}$$

Is WIMP the right Miracle?

- \bullet $\rho_X \sim 5\rho_B$
- Why should dark matter and ordinary matter energy densities be at all comparable?
- Could just be independently generated – baryogesis somehow and weak miracle
- Could be related: Asymmetric Dark Matter
 - $n_B \sim 5n_X$
- Could be more generally related; naturalness not quite so inflexible
 - Weak scale dark matter still natural
 - Thermal suppression
 - Bleeding excess number density through in eqm lepton violation below sphaeleron scale

All Sorts of Miracles Possible

- Asymmetric Dark Matter
 - Make B, Transfer B to X, $n_B \sim n_X$, light DM
 - Zurek, Luty, Kaplan
- Hylogenesis
 - Make B, X together n_B~n_X, light Dark
 - Morrissey, Tulin, Hall, March-Wates
- Darkogenesis, Dark Genesis
 - Make X, Transfer X to B $n_B \sim n_X$, light DM
 - Shelton, Zurek
- Xogenesis
 - Make X, Transfer X to B, n_B < n_X, weak scale DM
 Weak Scale

Dark Matter

- Buckley, LR
- Xogenesis'
 - Make X, B, n_B<n_X, weak scale DM
 - Cui, Kahawala, LR, Shuve

Idea

- Asymmetry in dark matter
- Transfer asymmetry to normal matter
- Here we assume dark matter asymmetry produced in early universe
- Question is when we have operators violating B or L and X simulatneously will be get correct matter density
- Question is whether number densities work out for a given mass
- Perhaps most natural mass is weak scale mass

Light Dark Matter: "Relativistic Solution"

□ Chemical equilibrium between B or L and X $\mu_X/\mu_B = \mathcal{O}(1)$

Net asymmetry

$$n_i = g_i f(m_i/T) T^2 R(T)^3 \mu_i$$

 Ratio chemical potential~ratio number density~ratio energy density

Weak Scale (or Heavy) Dark Matter "Nonrelativistic Solution"

More generally

$$n_i = g_i f(m_i/T) T^2 R(T)^3 \mu_i$$

$$f(x) = \frac{1}{4\pi^2} \int_0^\infty \frac{y^2 dy}{\cosh^2\left(\frac{1}{2}\sqrt{y^2 + x^2}\right)} \, dx$$

Nonrelativistic Solution

Need to solve

$$f(m_X/T_D) = \mathcal{O}(1)f(0)\frac{\rho_{\rm DM}}{\rho_B}\frac{m_{\rm proton}}{m_X}$$

- Number density of X less than B
- Chemical, but no longer thermal equilibrium
- Allows for different masses

Naturalness allows hierarchy of order 10

- Right ratio of densities found for wide range of m/T
- Usually need m/T~10, which is quite reasonable
- Expect comparable densities over the whole range

Xogenesis New Class of Models

- New "miracle"-New models
 - Transfer asymmetry from dark matter to matter
 - Create both at same time
 - Can be weak scale
 - Can be light
- Different bounds
- Different tests
- Lighter more accessible
- Challenges for future-
 - Models
 - Searches

For the Future

- Open mind
- Open data sets
- Multiple data sets
 - Complementarity
- Optimize and exploit what we have
- Think about experiments, theory in parallel
 - Individually and as a community

What to Do?

- Anticipate
 - As much as we can...
- Model building is good!
 - Simple best
 - But not if not realized in nature
- Truly tragic if LHC misses something that is there
 - Even unrelated to hierarchy
 - Vector representations
 - Light particles
- Jet physics
 - Many advances
 - Asking different questions
 - Helping with both SM, BSM physics

What to Do?

- Celebrate experiments working
- Make sure we do everything we can with existing experiments
- Think about what experiments true implications will be
- Think about what is most necessary for future
 - Soon?

