QCD Results from the Tevatron

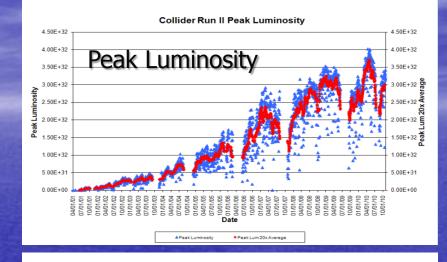
Ashish Kumar, SUNY at Buffalo (on behalf of CDF & D0 Collaborations)

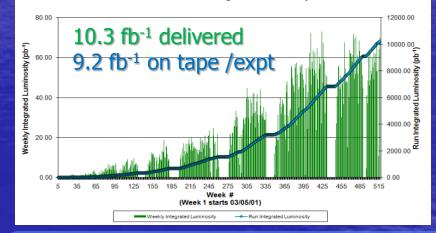
Aspen Winter 2011

Outline

- Fermilab Tevatron, CDF and D0 Detectors
- Motivation
- Photons
- Jets
- Vector boson + jets (Heavy Flavor Jets)
- Photon + Heavy Flavor Jets
- Summary

Only a small fraction of extensive QCD results from the Tevatron can be covered in 25 minutes. Selected some of the latest results. More results can be found on:


- http://www-cdf.fnal.gov/physics/new/qcd/QCD.html
- http://www-d0.fnal.gov/Run2Physics/WWW/results/gcd.htm

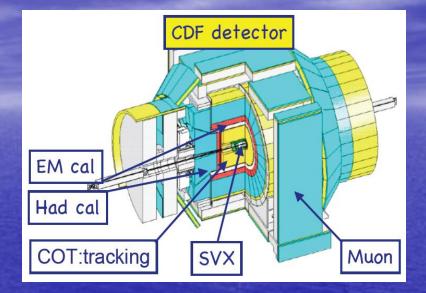

Ashish Kumar

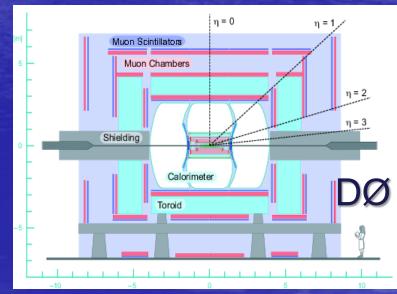
Aspen Winter 2011

The Tevatron Collider at Fermilab

Collider Run II Integrated Luminosity

Hope ~12 fb⁻¹ delivered by FY11 Results presented based on 1 - 6 fb⁻¹



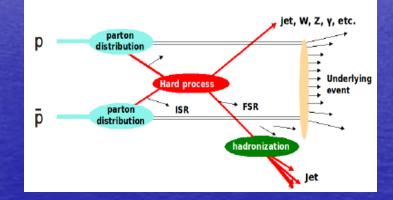

CDF & DØ Run II Detectors

- Multi-purpose detectors with broad particle identification capabilities
 - Common features
 - Tracking in magnetic field with silicon vertexing
 - EM and Hadron calorimeters
 - Muon systems
 - Competitive advantages
 - CDF : better track momentum resolution & displaced track trigger at Level 1
 - D0 : finer calorimeter segmentation, and forward muon system

Performing well making use of all detectors capabilities

Ashish Kumar

QCD at the Tevatron


- Test of pQCD calculations at new level

 NLO +Higher order corrections
 resummations, fragmentation and ISR/FSR models
 tuning of event generators

 Constrain structure of the proton→

 Parton distribution functions (PDFs)
 gluon (←inclusive jets)
 HF (←W/Z/γ+HF)

 Measure important backgrounds to
- Measure Important backgrounds to searches for Higgs, SUSY and other new physics
- Unique sensitivity to new physics (e.g. resonances in signatures with jets)

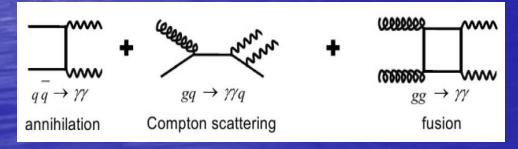
Photons

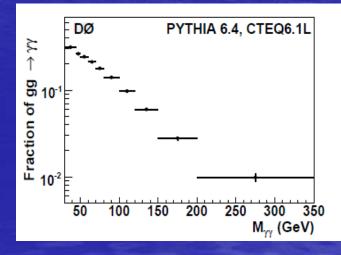
Precision test of pQCD predictions

-- come unaltered from the hard subprocess-- direct probe of the hard scattering dynamics-- clean probe w/o complications from jet

fragmentations and systematics.

Sensitivity to gluon PDFs



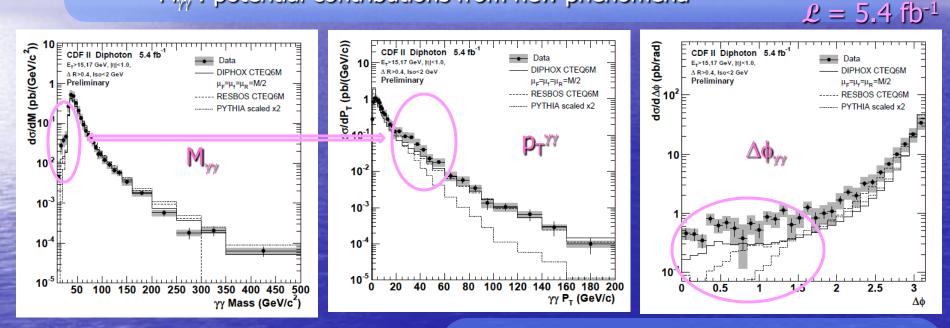

Direct Photon Pair Production

Large irreducible background to many interesting physics processes

- SM Higgs searches ($H \rightarrow \gamma \gamma$)
- BSM searches (new heavy resonances, extra spatial dimensions etc.)
- Precise understanding of QCD production mechanisms indispensable to searches for new physics
- Test of pQCD calculations and soft-gluon resummation methods implemented in theoretical calculations
 - At the Tevatron, production dominated (at high M_m) by cpbar annihilation.
 - At the LHC, contributions from gg fusion and qg initiated processes will be significant

Ashish Kumar

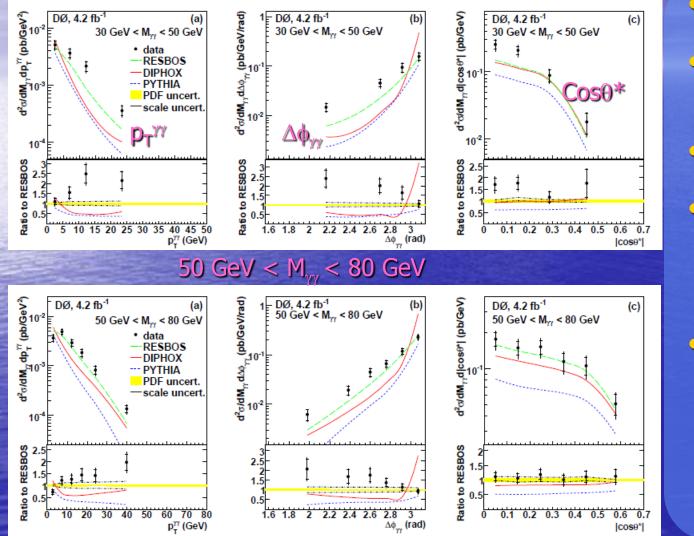
Aspen 2011


7

CDF Note 10160

Diphoton Cross Sections

Measurement of differential cross sections vs different kinematic variables probing different aspects of production mechanism $- p_T^{\gamma\gamma}, \Delta\phi_{\gamma\gamma}$: initial-state gluon radiation & fragmentation effects $- M_{\gamma\gamma}$: potential contributions from new phenomena



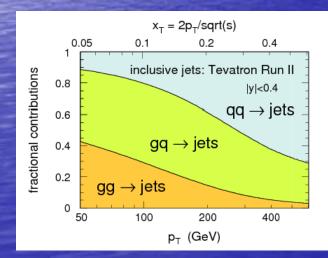
Theoretical predictions RESBOS: NLO, resummation of soft-gluon emissions DIPHOX: NLO, gg fusion @ LO PYTHIA: LO Ashish Kumar No model describes the data well over the full kinematic range, in particular at low $M_{\gamma\gamma}$ and low $\Delta\phi_{\gamma\gamma}$ where gluon scattering & fragmentations surviving the isolation cut are expected to contribute strongly. Aspen 2011 8

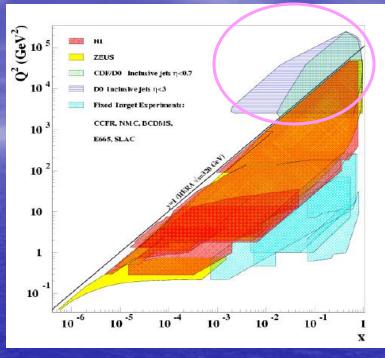
plb 690, 108 (2010) Diphoton Cross Sections

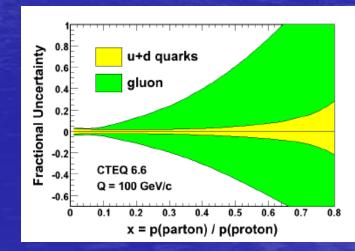
$30 \text{ GeV} < M_{yy} < 50 \text{ GeV}$

$\mathcal{L} = 4.2 \text{ fb}^{-1}$

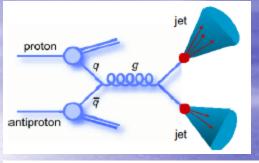
- Also looked double diff x-sections
- Additional variable Cos0*
- RESBOS shows the best agreement ,
- Agreement with RESBOS fair at intermediate M_{γγ} and good at high M_{γγ}.
- Need for including higher order corrections beyond NLO as well as complete resummation of soft and collinear initial state gluons.

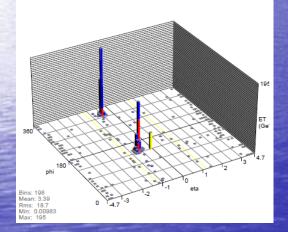

Ashish Kumar




 Collimated sprays of hadrons generated by the fragmentation of partons originating from the hard scattering.

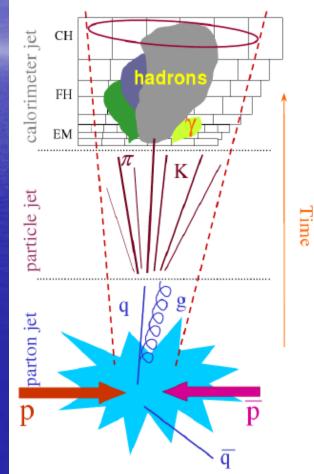
Jet Production


- Kinematic reach in (x,Q²) compared to HERA and fixed target experiments -- sensitive to PDFs at large momentum fractions x and scales Q²
- Sensitive to gluon content of the proton at high x where it is weekly constrained. Well constrained at low x by HERA data.



Jet Reconstruction and Measurements

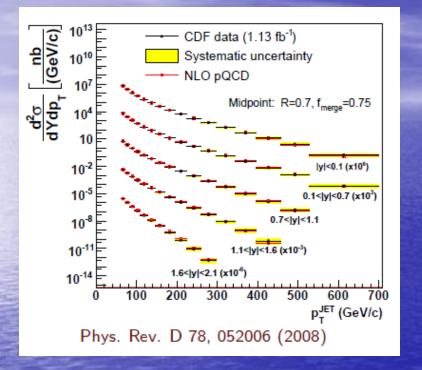
Run 162592 Event 5490755 Thu Oct 24 13:54:25 2002

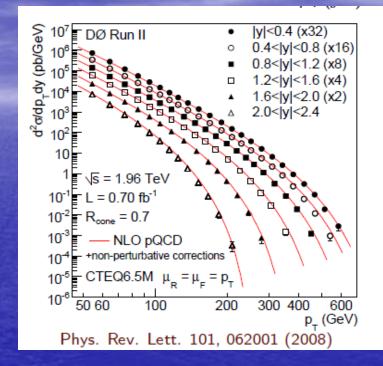


Unfold measurements to hadron (particle) level – need jet energy scale calibration and energy resolution

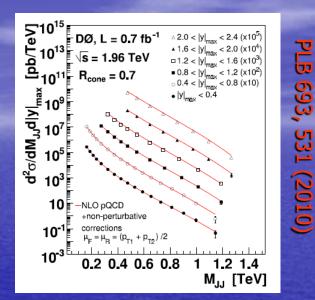
Data – Theory comparison at hadron (particle) level

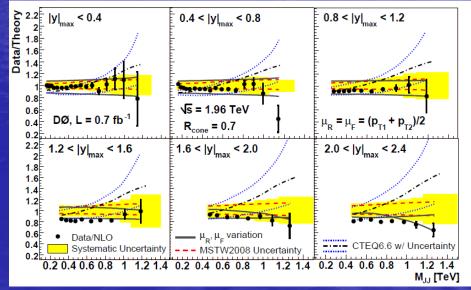
Correct parton-level theory for non-perturbative effects -fragmentation/ hadronization underlying event


Use midpoint cone algorithm in $\eta\text{-}\phi$ space to reconstruct jets -- calorimeter towers as seeds



Inclusive Jet Cross Sections

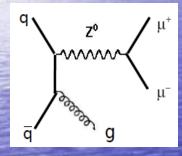



One of most direct probes of the physics at small distances directly sensitive to α_s and PDFs of the proton Measurements test pQCD over 8 order of magnitude in $d\sigma^2/dp_T dy$ \bigcirc Both measurements in agreement with NLO QCD 0 High p_T tail probes distances down to 10^{-19} m and is sensitive to new physics. 0 Ashish Kumar Aspen 2011

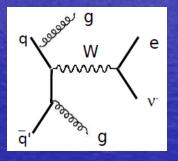
Dijet Mass Spectrum

- D0 measurement of $d^2\sigma/dM_{jj}d|y|_{max}$ -- $p_T(j1,j2) > 40 \text{ GeV}$ -- six $|y|_{max}$ regions, $0 < |y|_{max} < 2.4$
- Extends kinematic range beyond previous experiments (|y| < 1.0)
- Sensitive to PDF of gluons at high x
- Sensitive to new particles (q*,W',Z')
- Data compared to NLO calculations (fastNLO)
 - MSTW2008NLO PDFs describes the shape better than CTEQ6.6
 - MSTW2008 PDFs include Run II incl. jets measurement
- Exp. uncert. similar in size to theory uncert. from PDF & scale

Substructure of High E_T Jets



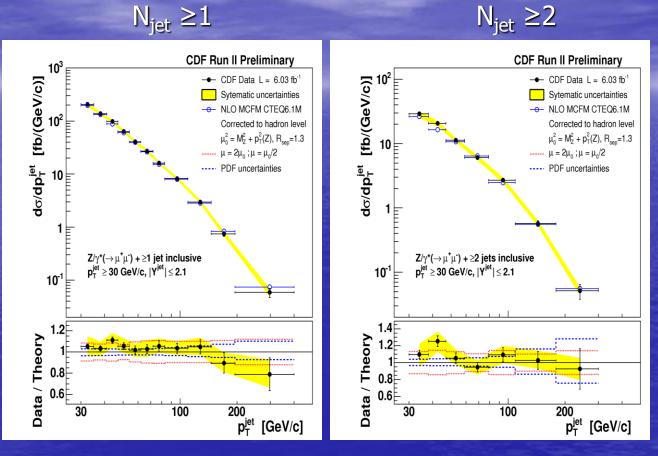
- Jet shape variables for high p_T (> 400 GeV) QCD jets
 Jet mass, Angularity, Planar Flow
- Study of massive jets:
 Test of pQCD predictions
 Tuning MC generators
 massive boosted jets comprise important background for high p_T top, Higgs and various BSM searches
- CDF Run II, L_{in} = 6 fb⁻¹ 0.004 0.004 Midpoint 0.0035 0.003 dN c.0000 dN et c.0000 et c.0000 et c.0000 et c.0000 et c.0000 et c.0000 et c. Gluon - Anti-k-0.002 0.001 Quark 100 Midpoint, R = 0.40.0005 0 110 120 130 m^{jet1} [GeV/c²] 100 90 140 150 160


 Jet Mass : Standard E-scheme for mass calculation : vector sum over (E,px,py,pz) of towers in jets.

- Data in agreement with PYTHIA prediction
- Data between quark and gluon prediction (consistent with the expectation that over 80% of jets would arise from quark showering)

W/Z + Jets

- Test of pQCD in multijet environment
 - Presence of W/Z ensure high Q²: pQCD
 - Clean environment: leptonic final state provides clean signature, low BG
 - High statistics allows precision tests
- Test of MC Models
 - Key sample to validate available MC tools using experimental data
- W/Z+HF production sensitive to HF PDFs
- Significant irreducible background
 - Top, Higgs, SUSY and many BSM scenarios
 - In particular, W/Z+bb


CDF Note 10216

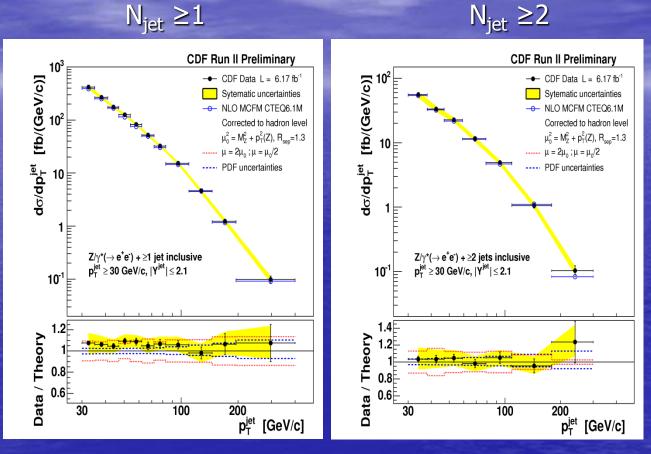
 $Z/\gamma^* \rightarrow \mu^+\mu^- +$ Jets Cross Sections

Kinematic selection Two central μ 's $p_T^{\mu} > 25 \text{ GeV}, |\eta| < 1.0$ $66 < M_{\mu\mu} < 106 \text{ GeV}$ $\geq 21 \text{ jet}, R = 0.7$ $p_T^{\text{jet}} > 30 \text{ GeV}, |y| < 2.1$

NLO MCFM : CTEQ6.1 PDF $\mu_0^2 = M_Z^2 + p_T^2(Z)$ Non-pert. Corr. for fragmentation and UE estimated from Pythia -Tune A

Data well described by NLO QCD (MCFM) Scale uncertainties : 10-15%

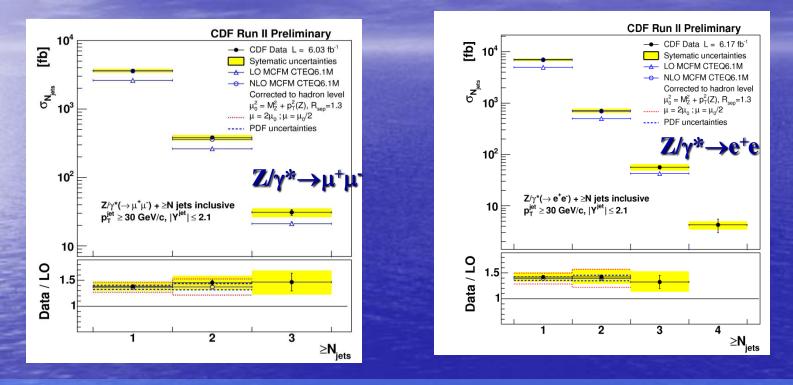
Ashish Kumar


CDF Note 10394

Kinematic selection • Two central μ 's $p_T^{\mu} > 25 \text{ GeV}, |\eta| < 1.0$ $66 < M_{\mu\mu} < 106 \text{ GeV}$ • $\geq 1 \text{ jet}, R = 0.7$ $p_T^{\text{jet}} > 30 \text{ GeV}, |y| < 2.1$

NLO MCFM : CTEQ6.1 PDF $\mu_0^2 = M_Z^2 + p_T^2(Z)$ Non-pert. Corr. for fragmentation and UE estimated from Pythia -Tune A

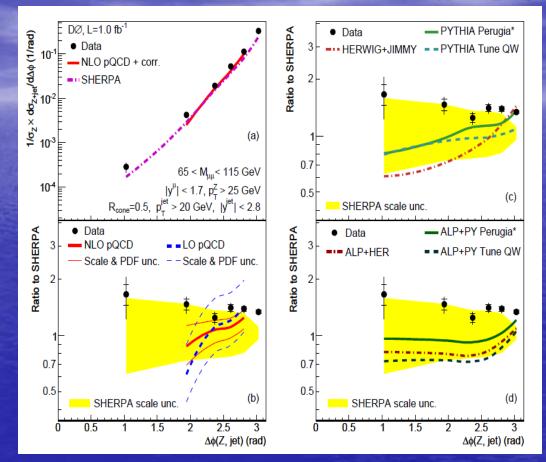
Measurements are well described by MCFM NLO Scale uncert. : 10 - 15%, PDF uncert. : 2 - 15%


Ashish Kumar

CDF Note 10216,10394

Z/y*+Jets Cross Sections

Total incl. cross sections in inclusive jet multiplicities



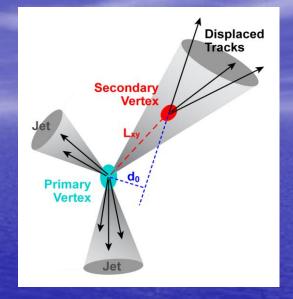
- Good agreement between data & NLO prediction in ≥ 1 , ≥ 2 jet bins
- For $N_{iet} \ge 3$, only LO calculation available
- Systematic uncertainties : 5–15%, JES dominant
- Data suggest a common ratio to LO of ~ 1.4

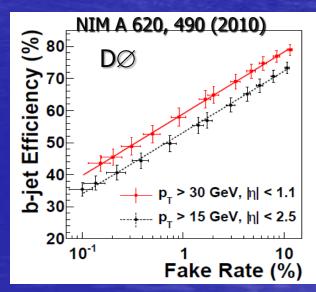
$Z/\gamma^*(\rightarrow \mu^+\mu^-) + jet(s) : Angular Correlations$ PLB 682, 370 (2010) $\mathcal{L} = 1 \text{ fb}^{-1}$

First measurements of angular correlations between Z and leading jet $\Delta \phi(Z, jet), \Delta y(Z, jet)$ $y_{boost}=1/2(y_Z + y_{jet})$ Sensitive to QCD radiation : Test of PS model assumptions.

- The diff. cross-sections are normalized to incl. σ(Z)
- Avoids systematic of JES
- p_T^z>25 GeV (avoid soft effects)
- Small ∆ φ(Z,jet) excluded from MCFM due to importance of non pert. Effects – reasonable agreement

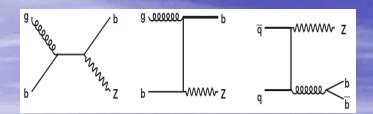
Shape of angular observables best described by SHERPA, but large scale uncertainties. Alpgen + Pythia (perugia) close to SHERPA.

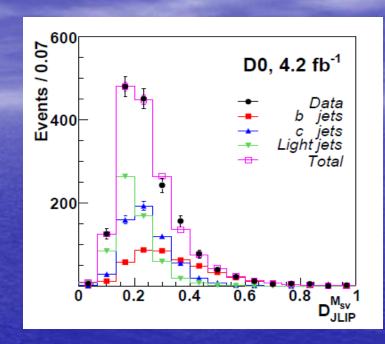

$W/Z/\gamma + b/c$ Jets


Identifying b-jets

Most common b-tagging technique exploits long lifetime of b-hadrons

 Reconstruct secondary vertex from displaced tracks (not from primary vertex) inside jet


 CDF' : SecVtx tagging based on large transverse displacement (L_{xy})
 D0 : NN based on combination of variables sensitive to presence of displaced tracks forming sec. vtx.



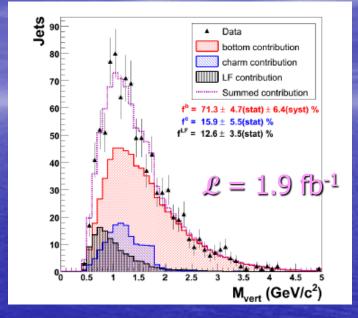
hep-ex/1010.6203 To appear in PRD-RC Z + b-jets / Z + jets

- Important background to the SM Higgs search in ZH channel
- Sensitive to b-quark PDF
- Cancellation of many systematics
 precise comparison with theory
- Consider ee/μμ channels
- Jets : R=0.5, p_T>20 GeV, |η|<2.5</p>
- Events with ≥1 b-tags identified using NN tagger
- Use discriminant with Secondary vertex Mass and jet lifetime prob. to separate b-jets from c & light
- Fit Data Bkgd with templates of discriminant to extract Z+b fraction

 $\sigma(Z+b)/\sigma(Z+jet) = 0.0192 \pm 0.0022 \pm 0.0015$ MCFM NLO = 0.0185 ± 0.0022 -Most precise till date -Extends kinematic region of jets -Consistent with CDF result @ 2 fb⁻¹: 0.0208 ± 0.0033 ± 0.0034

Ashish Kumar

W + b jets


PRL 104, 131801 (2010)

 Important background to the Higgs search in WH channel and study of top quark properties

- → W→Iv (I=e,µ) selection $p_T>20$ GeV, |η|<1.1, $p_T^v>25$ GeV
- > Jets : 1 or 2 in final state $R = 0.4, p_T > 20 \text{ GeV}, |\eta| < 1.5$
- > ≥1 b-tagged jet, SecVtx algorithm
 > Determine W+b fraction from fit to Vertex Mass distribution M_{vert}

 Major backgrounds ttbar (40%), single top (30%)
 Fake W (15%), WZ (5%)

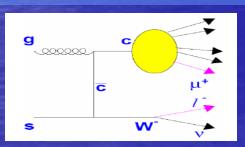
Ashish Kumar

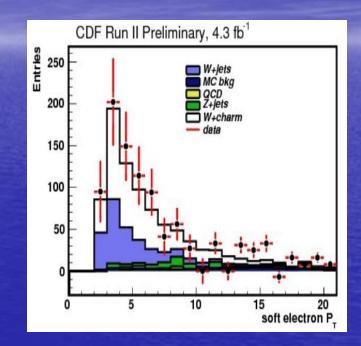
• Measurement $\sigma xBR = 2.74 \pm 0.27 \pm 0.42 \text{ pb}$

Prediction
 NLO : 1.22 ± 0.14 pb
 (Campbell, Cordero, Reina)
 Pythia : 1.10 pb, Alpgen : 0.78 pb

 \rightarrow Measurement substantially higher

CDF Note 10089


W + c jet


- s + g fusion : ~90%
 >sensitive to gluon and s-quark PDF
- BG for single top, WH

Strategy

- W \rightarrow Iv selected by high p_T e/µ+MET
- c-jets are identified by soft lepton tagging (SLT) algorithm
- Exploit charge correlation between lepton from W decay and SLT lepton
- Wc events : Opp. Sign.
 Most of BG processes like Wcc give opp. sign & same sign almost equally
- Look for excess of N^{OS} N^{SS}

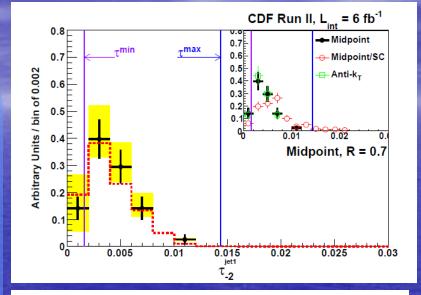
Ashish Kumar

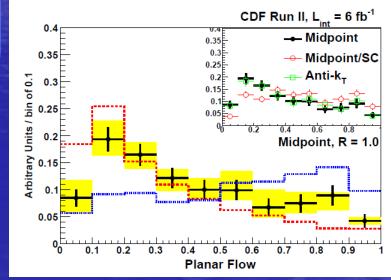
CDF @ 4.3 fb⁻¹ $p_T^{c-jet} > 20 \text{ GeV}, |\eta^{c-jet}| < 1.5$ $\sigma \times BR = 33.7 \pm 11.4 \pm 7.3 \text{ pb}$ Alpgen = 16.5 \pm 4.7 pb

Summary & Outlook

 Tevatron has a rich physics program for QCD analyses which has significantly advanced our understanding over the years

- Many interesting results
- Enormous data leading to better precision
- Good understanding of these processes critical for SM Higgs and NP searches
- More results with better statistics will become available soon.
- ~12 fb-1 data expected by end of Tevatron operation in 2011.
- Stay tuned for the more exciting results from the Tevatron experiments


http://www-cdf.fnal.gov/physics/new/qcd/QCD.html http://www-d0.fnal.gov/Run2Physics/qcd/


Substructure of High p_T Jets –II

 Angularity and Planar flow are jet shape variables expected to provide discrimination of massive jets arising from QCD production and other sources such as top production.
 --Angularity is sensitive to the degree symmetry of energy deposition
 --Planar flow distinguishes planar from linear configurations

 Both variables are IR-safe and less dependent on jet finding algorithm.

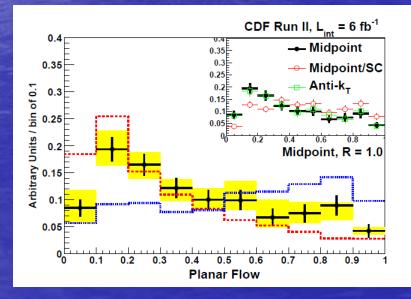
Substructure of High p_T Jets –II

Angularity

$$\tau_a(R, p_T) = \frac{1}{m_J} \sum_{i \in jet} \omega_i \sin^a \theta_i \left[1 - \cos \theta_i \right]^{1-a} \sim \frac{2^{a-1}}{m_J} \sum_{i \in jet} \omega_i \theta_i^{2-a}$$

where ω_i is the energy of a component inside the jet (such as a calorimeter tower). Limiting the parameter a ≤ 2 ensures IR safety, as can be directly seen from the expression on the right hand side of the equation which is valid for small angle radiation $\theta_i << 1$.

Substructure of High p_T Jets –III


Planar Flow

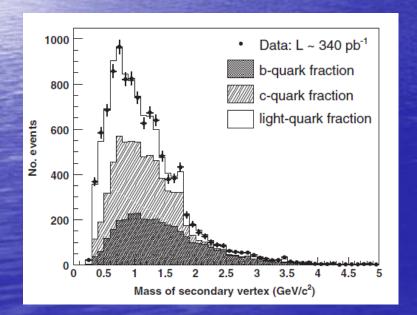
$$I_w^{kl} = \frac{1}{m_J} \sum_i w_i \frac{p_{i,k}}{w_i} \frac{p_{i,l}}{w_i}$$

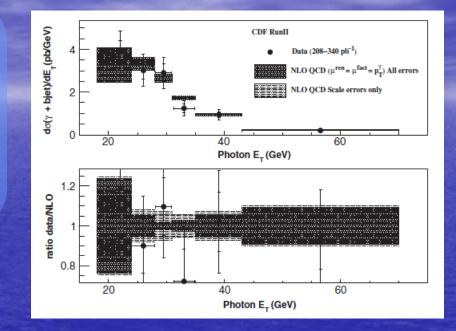
where m_j is the jet mass, w_i is the energy of particle i in the jet, and $p_{i,k}$ is the k^{th} component of its transverse momentum relative to the jet momentum axis. Given I_w , we define Pf for that jet as

$$Pf = 4 \frac{\det(\mathbf{I}_{w})}{\mathrm{tr}(\mathbf{I}_{w})^{2}} = \frac{4\lambda_{1}\lambda_{2}}{(\lambda_{1} + \lambda_{2})^{2}}$$

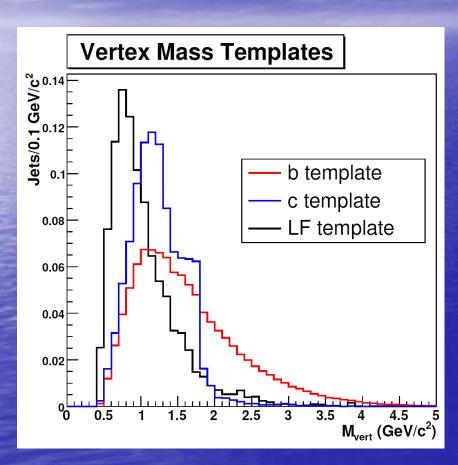
where $\lambda_{1,2}$ are the eigenvalues of I_w . P_f vanishes for linear shapes and approaches unity for isotropic depositions of energy.

Ashish Kumar


PRD 31, 052005 (2010)


γ + b jet

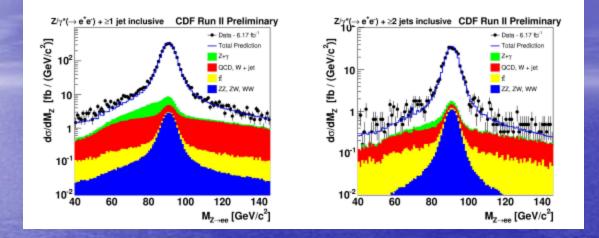
- Jets : E_T^{jet}>20 GeV, |y^{jet}|<1.5</p>
- Identify b-jet using displaced secondary vertices
- Determine the fraction of γ+b jet by fitting the secondary vertex mass templates



- Data well described by NLO calculations using CTEQ6.6 PDFs.
- Measured total cross section = 54.22±3.26 (stat)±5.1(syst) pb
- NLO : 55.62±3.87 pb

W + c jet Measurement

Source	Relative Uncertainty (%)
Jet energy scale	± 6.0
W-lepton ID	± 2.0
Luminosity	± 8.3
BKG cross sections	± 5.0
Tagging Efficiency	± 8.8
Fake matrix	± 5.0
Conversion scale factor	± 3.3
Calorimeter modeling	± 3.8
ISR/FSR	± 7.0
Q^2	± 10.0
QCD estimation	± 1.7
PDF	± 8.0
Total	± 21.8


W + b jet Measurement

Source	$\frac{\delta_{\sigma_{b-\text{jets}}\times BR}}{\sigma_{b-\text{jets}}\times BR} \ (\%)$	
b shape modeling	8	
c shape modeling	1	
LF shape modeling	3	
UT tag efficiency	6	
Luminosity	6	
Top Cross Sections	2	
Fake $W^{\pm} \not\!\!\!E_T$ fits	1	
Tagged Fake $W^{\pm} b$ fraction	1	
Jet Energy Scale	3	
Q^2	3	
PDF	2	
$ z_0 $ efficiency	<1	
Trigger efficiency	<1	
Lepton ID efficiency	<1	

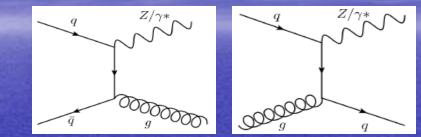
Ashish Kumar

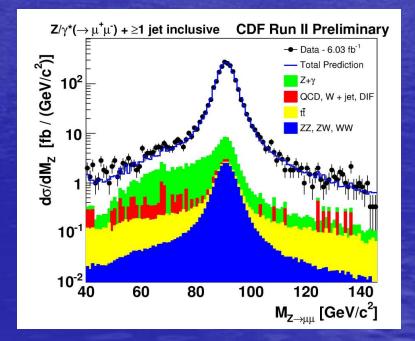
Z(ee)+jets Measurement

CDF Run II Preliminary

Backgrounds	Estimated events in 6.17 fb^{-1}			
	$\mathbf{Z} + \geq 1$ jet	$\mathbf{Z} + \geq 2$ jets	$\mathbf{Z} + \geq 3$ jets	$\mathbf{Z} + \ge 4$ jets
QCD, W+Jet	502.1 ± 75.3	67.5 ± 10.1	7.6 ± 1.1	0.7 ± 0.1
$Z/\gamma^* \rightarrow e^+e^- + \gamma$	483.8 ± 145.1	32.0 ± 9.6	1.8 ± 0.5	0.1 ± 0.0
WW, ZZ, ZW	164.0 ± 49.2	61.5 ± 18.5	6.3 ± 1.9	0.5 ± 0.2
tī	49.5 ± 14.9	29.8 ± 9.0	4.6 ± 1.4	0.6 ± 0.2
$Z/\gamma^* \rightarrow \tau^+\tau^- + \text{jet}$	16.3 ± 4.9	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Total Backgrounds	1216 ± 172	191 ± 25	20.3 ± 2.7	1.8 ± 0.3
Data	20032 ± 142	2130 ± 46	187 ± 13.7	15.0 ± 3.9

 $Z/\gamma^* \rightarrow \mu^+\mu^- + Jets$


Latest results with 6 fb⁻¹


Kinematic selection $p_{T^{\mu}} > 25 \text{ GeV}, |\eta| < 1.0, 66 < M_{\mu\mu} < 106 \text{ GeV}$ $p_{T^{jet}} > 30 \text{ GeV}, |y| < 2.1, R = 0.7$

Events :13000, 1500, 130 in Z+≥1 jet, ≥2, ≥3 jet bins

 Backgrounds: QCD multi-jet, W+jets (data-driven) Zγ, Top, Diboson, Z→ττ (MC) – Total BG 5-10%

		CDF II	Preliminary	
Backgrounds	Estimated events in 6.03 fb^{-1}			
	$\mathbf{Z} + \geq 1 \; \mathbf{jet}$	$\mathbf{Z}+\geq 2\; \mathbf{jets}$	Z + \geq 3 jets	
$Z/\gamma^* \to \mu^+\mu^- + \gamma$	495.5 ± 148.6	39.9 ± 12.0	2.4 ± 0.7	
WW, ZZ, ZW	134.3 ± 40.3	48.9 ± 14.7	4.9 ± 1.5	
QCD, W+jets and DIF	72 ± 72	20 ± 20	2.0 ± 2.0	
tt production	44.2 ± 13.2	25.1 ± 7.5	3.1 ± 0.9	
$Z \rightarrow \tau^+ \tau^- + jets$	3.6 ± 1.1	1.7 ± 0.5	0.0 ± 0.0	
Total Backgrounds	750 ± 171	136 ± 29	12.3 ± 2.7	
Data	13247 ± 115	1485 ± 39	133.0 ± 11.5	

Ashish Kumar

SM Benchmarks for Tevatron & LHC, 11/20/10