

Recent results from the Belle and BABAR experiments

David J Lange Lawrence Livermore National Laboratory February 17, 2011

Outline

 γ/ϕ_3 using $B \rightarrow D^{(*)} K^{(*)}$ modes $|V_{ub}|$ using inclusive $b \rightarrow u l v$ recoil approach and $B \rightarrow \pi l v$.

CKM Mechanism confirmed

- Current measurements of quark mixing and CP violation are consistent with CKM picture.
- However, our knowledge of b-quark sector of CKM matrix remains limited by experimental uncertainties.
- Improved measurements of least well known components (e.g., V_{ub} and γ/φ₃) will further constrain physics beyond the Standard Model.
- The Belle and BABAR experiments are completing measurements using their final data samples.

Belle and BABAR experiments: CKM physics using $e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}$ decays

- Data collection started 1999
- Both Belle and BABAR are hermetic detectors and have excellent tracking, vertexing and particle ID capabilities
- Boosted center-of-mass enables time-dependent CP-violation analysis

Both experiments are finalizing analysis using their full data sample

0

Today: New results on:

- γ/ϕ_3 using $B \rightarrow D^{(*)}K^{(*)}$ modes
- $|V_{ub}|$ using inclusive $b \rightarrow u l v$ recoil approach and $B \rightarrow \pi l v$.

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012

> 1 ab^{-1} On resonance: $\Upsilon(5S): 121 fb^{-1}$ $\Upsilon(4S): 711 fb^{-1}$ $\Upsilon(3S): 3 fb^{-1}$ $\Upsilon(2S): 24 fb^{-1}$ $\Upsilon(1S): 6 fb^{-1}$ Off reson./scan: $\sim 100 fb^{-1}$

~ 550 fb⁻¹ On resonance: $\Upsilon(4S): 433 \text{ fb}^{-1}$ $\Upsilon(3S): 30 \text{ fb}^{-1}$ $\Upsilon(2S): 14 \text{ fb}^{-1}$ Off resonance: ~ 54 fb⁻¹

David J Lange, LLNL

$B(Y(4S) \rightarrow BB)$ is ~100%. Achieve clean B meson samples by reducing $ee \rightarrow qq$ background

Continuum (qq) bkg suppression

K/ π separation: Cherenkov angle + dE/dx

- Analyses take data driven approach whenever possible.
- Several different multivariate techniques used, particularly for continuum background suppression

$B \rightarrow D^{(*)}K^{(*)}$ decays are a theoretically clean way to measure γ/ϕ_3

Sensitivity to CP violation comes from interference of two tree diagrams $(b \rightarrow c \text{ and } b \rightarrow u)$ in charged or self-tagging neutral $B \rightarrow DK$ decays with final state assessable to both $D^{(*)}$ and $\overline{D}^{(*)}$

Small theoretical uncertainties but experimentally challenging

- Very small branching fractions and generally small interference effects between amplitudes
- Must determine relative amplitude (r_B) and strong phase between $b \rightarrow c$ and $b \rightarrow u$ amplitudes experimentally

Three common approaches using $B \rightarrow D^{(*)}K^{(*)}$ decays

Approach	D decay mechanism	Advantages / Disadvantages	
ADS (Atwood, Dunietz, Soni, PRL 78, 3357)	Doubly Cabibbo suppressed $D \rightarrow K \pi$	 Larger asymmetries (~50%) Smaller rates (BF ~10⁻⁷) 4-fold γ ambiguity 	
GLW (Gronau, London, Wyler, PL B253 483, PL B265 172)	CP eigenstates (Singlely suppressed)	 Small asymmetries (20-30%) 8-fold γ ambiguity BF ~10⁻⁶ 	
GGSZ (Giri,Grossman, Soffer, Zupan, PRD 68, 054018)	Cabibbo favored multibody decays $D \rightarrow K_s \pi^* \pi$	 Larger rates (BF~10⁻⁵) Asymmetry varies across D daughter Dalitz plane. Fit to determine γ. 2-fold ambiguity in γ 	

GGSZ approach: Fit interfering amplitudes in $D \rightarrow K_s \pi^* \pi$ and $D \rightarrow K_s K^* K^-$ modes

GGSZ event samples: Both experiments still improving analysis method

- Belle analysis update adds D^*K channel with $D^* \rightarrow D\gamma$
- BABAR has improved signal efficiency by ~20% relative to previous result
- The $D \rightarrow K_s \pi \pi$ and $D \rightarrow K_s KK$ Dalitz plot description critical. Both experiments leverage high statistics D samples from $e^+e^- \rightarrow q\bar{q}$ events.

GGSZ method results

Determine CP parameters for each mode:

 $x_{\pm} = r_{\pm} \cos(\pm \phi_3 + \delta)$ $y_{\pm} = r_{\pm} \sin(\pm \phi_3 + \delta)$

Both experiments apply a frequentist approach to determine γ from these measurements

$$\gamma$$
(mod180°) = (68±14±4±3)°

$$=(78.4^{+10.8}_{-1.6}\pm 3.6\pm 8.9)^{\circ}$$

GGSZ is best single approach for measuring γ with current event samples. Final Belle analysis will incorporate model independent approach.

BABAR: PRL 105.121801 Belle: PRD 81.112002

ADS method examines interference of two comparable amplitudes

• Use event yields to determine:

$$\mathcal{R}^{(*)\pm} \equiv \frac{\Gamma([K \oplus \pi^{\pm}]_D K \oplus)}{\Gamma([K \oplus \pi^{\pm}]_D K \oplus)} = r_B^{(*)2} + r_D^2 + 2\lambda r_B^{(*)} r_D \cos(\pm\gamma + \delta_D + \delta_B^{(*)})$$

- Primary background is qq continuum. Updated Belle analysis adds NeuroBayes neural network
- Use PID and kinematics to remove potential peaking backgrounds
- CLEO-c measurements determine δ_{D} and \textbf{r}_{D}

Belle reports first evidence of ADS signal BABAR reports 2.1 σ signal in $B \rightarrow DK$ and 2.2 σ in $B \rightarrow D^*K$

Together the experiments begin to see indication of direct CP violation (A_{ADS})

 $R_{ADS}(DK) = 0.015 \pm 0.004$ $A_{ADS}(DK) = -0.52 \pm 0.21$

γ summary: $B \rightarrow DK$ makes ±11° measurement. Consistent with unitarity constraint on γ

Determine $|V_{ub}|$ from measurements of inclusive and exclusive semileptonic decays

- OPE in α_s and Λ/m_b
- Theory uncertainty on total decay rate is below 5%

- A number of QCD approaches to form factors calculation.
- Smaller exp. event samples

Experimental challenge: Maintain sensitivity to as much of the $b \rightarrow ulv$ kinematic range as possible

Experimental techniques to reduce $b \rightarrow clv$ have expanded kinematic reach beyond endpoint region

- Use large data samples allow us to trade efficiency to extend sensitivity into a larger portion of kinematic range.
- Both inclusive and exclusive approaches have moved far below traditional b→c endpoint analysis.
- Extrapolation of experimental results to full kinematic range is still an important factor in $|V_{ub}|$ determination

Recoil analysis method provides best method to measure inclusive $b \rightarrow ulv$ decays

Full reconstruction of B decays using ~1000 of $b \rightarrow c$ hadronic decays

- Low efficiency (~0.04%) but kinematics of signal B decay are completely determined
- Analyze rest of event for b→ulv signature. Require lepton and use kinematics and particle ID mechanisms to reduce b→clv contribution.

BABAR and Belle results on inclusive $b \rightarrow ulv$ using recoil analysis

- Joint fit kinematic distributions.
- Sensitivity to $b \rightarrow u l v$ signal down to lepton p* of 1 GeV.
- Use background sidebands to improve MC modeling of $b \rightarrow clv$ contribution.
- Systematic errors primarily from uncertainty in signal kinematic distributions

 $\Delta B(X_u lv) = (1.80 \pm 0.13 \pm 0.15) \times 10^{-3}$

 \mathcal{B} $=(1.963\pm0.17\pm0.16)x10^{-3}$

BABAR: Preliminary Belle: Preliminary

Summary of |Vub| with inclusive measurements

Inclusive $b \rightarrow ul v$ measurements using BLNP model for $\Delta\Gamma$

Theoretical calculation	Experimental average
BLNP (Bosch,Lange, Neubert, Paz, PRD72:073006)	$4.30 \pm 0.16^{+0.21}_{-0.23}$
DGE (Andersen, Gardi, HEP 0601:097)	$4.37 \pm 0.15^{+0.17}_{-0.16}$
GGOU (Gambino, Giordano, Ossola, Uraltsev, JHEP 0710:058)	$4.30 \pm 0.16^{+0.13}_{-0.20}$
ADFR (Aglietti, Di Lodovico, Ferrara, Ricciardi, arXiv:0711.0860)	$4.05 \pm 0.13^{+0.24}_{-0.21}$

Exclusive $b \rightarrow u v$ determinations of $|V_{ub}|$

|V_{ub}| is related to differential branching fraction for B→πlν by q² dependent form factor

$$\frac{d\Gamma(B \to \pi I\nu)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{192\pi^3 m_B^3} \lambda(q^2)^{3/2} |f_+^{\pi}(q^2)|^2$$

- Experimentally measure branching fraction in portion of kinematic range
- Use theory predictions for |f₊(q²)| to extrapolate to full kinematic range and to |V_{ub}|

Clean e⁺e⁻ environment allows us to inclusively reconstruct neutrino kinematics

- Exclusively reconstruction π+l, then examine rest of event to make best estimate of missing neutrino momentum.
- Several methods developed that trade off signal efficiency for sample purity.
- Extract partial branching fractions in bins of q².
- B→π/ν is most sensitive mode, however analyses include other channels including ρlv, ηlv, and η'lv.

New results from two BABAR analyses and one Belle analysis.

David J Lange, LLNL

Partial branching fraction as function of q^2 can then be compared to theory

	BABAR hep-ex/1010.0987	BABAR hep-ex/1005.3288	Belle hep-ex/1012.0090
BF(B→πIν)/10 ⁻⁴	1.49±0.04±0.07	1.49±0.04±0.07	1.49±0.04±0.07
BF(B→ρIν)/10 ⁻⁴		1.75±0.15±0.27	
BF(B→ηIν)/10⁻⁵	3.61±0.45±0.44		
BF(B→η′Iν)/10 ⁻⁵	2.43±0.80±0.34		
2/17/2011	Devi		

$B \rightarrow \pi l v$ constraint on $|V_{ub}|$: Reduce total uncertainty from combined experimental and LQCD fit

 Perform joint fit using Belle and BABAR data together with LQCD predictions (and uncertainties)
 [approach: FNAL/MILC PRD79:054507]:

 $\chi^2 = \chi^2(\text{data}) + \chi^2(\text{lattice})$

 This approach reduces the total uncertainty due to the extrapolation to the full kinematic range significantly:

$$|V_{ub}| = (3.26 \pm 0.33) \times 10^{-3}$$

Summary and Outlook

- Measurements of γ with $B \rightarrow DK$:
 - Number of new results from both experiments.
 - GGSZ approach using $D \rightarrow K_s \pi \pi$ Dalitz analysis gives most stringent constraint on γ .
 - First evidence for ADS mode reported by Belle
 - Direct determinations of γ are consistent with indirect CKM constraints on γ .
- Measurements of $|V_{ub}|$:
 - New results using both inclusive and exclusive $b \rightarrow u l v$ decays
- Larger data samples needed to test CKM to higher precision and resolve possible tension between $|V_{ub}|$ determined from inclusive $b \rightarrow ulv$, exclusive $b \rightarrow ulv$ and $B \rightarrow \tau v$.