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Different types of calculations
Three different expansion possible to calculate QCD

Straight perturbation theory
Logarithmic resummation
Kinematic expansion (parton showers)

Each have their advantages, and can describe physics in 
different kinematical regions

Widely separated jets, only one large scale
Widely separated scales
Collinear radiation, jet substructure

Best description obtained by combining the 
different expansions
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Peturbative calculations
Example: pp → W j

Leading order:

At NLO need:

P.B. Arnold, M. Hall Reno / Wand Z production 
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Fig. 1. Leading diagrams for q~ ~ g3'*. The looped lines are gluons, the wavy, unlooped lines are 
photons or W's. 
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Fig. 2. Next-to-leading diagrams for qC t ~ g~,*. 
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Fig. 3. Diagrams for qq --, gg3'*. 

scat ter ing.  The  d iagrams  H of fig. 5 are for qq scattering.  H 5 through H 8 should be 

inc luded  on ly  if ei ther the ini t ial  two quarks or final two quarks are identical .  

A f t e r  no t a t i ona l  pre l iminar ies  in sect. 2, we outl ine the ca lcula t ional  p rocedure  

us ing d imens iona l  regular izat ion in sect. 3. A discussion of  how to conver t  f rom MS 

fac to r i za t ion  to any other  scheme is descr ibed in sect. 4. In  sect. 5, we demons t r a t e  

tha t  we can  s ideskip most  of the difficult ies associated with Y5 in d imens iona l  

P.B. Arnold, M. Hall Reno / Wand Z production 

Ill if ill t iiiill 
L]. L 2 

39 

Fig. 1. Leading diagrams for q~ ~ g3'*. The looped lines are gluons, the wavy, unlooped lines are 
photons or W's. 

v l  v2 v 3 v 4 v~ 

_ .iiiii.ii  iii..iiii L I ,  ......  i..L ILl ........ t Y  
v 6 v~ v 8 v 9 V]o vzz 

Fig. 2. Next-to-leading diagrams for qC t ~ g~,*. 

G1 G 2 G 3 G 4 

....... " ~i ~ [ IL~ i~2 ~ 
LU.* ,***,* t, 3 ° ' ~ 4  

G 5 G 6 G 7 G 8 

Fig. 3. Diagrams for qq --, gg3'*. 

scat ter ing.  The  d iagrams  H of fig. 5 are for qq scattering.  H 5 through H 8 should be 

inc luded  on ly  if ei ther the ini t ial  two quarks or final two quarks are identical .  

A f t e r  no t a t i ona l  pre l iminar ies  in sect. 2, we outl ine the ca lcula t ional  p rocedure  

us ing d imens iona l  regular izat ion in sect. 3. A discussion of  how to conver t  f rom MS 

fac to r i za t ion  to any other  scheme is descr ibed in sect. 4. In  sect. 5, we demons t r a t e  

tha t  we can  s ideskip most  of the difficult ies associated with Y5 in d imens iona l  

virtual

P.B. Arnold, M. Hall Reno / Wand Z production 

Ill if ill t iiiill 
L]. L 2 

39 

Fig. 1. Leading diagrams for q~ ~ g3'*. The looped lines are gluons, the wavy, unlooped lines are 
photons or W's. 

v l  v2 v 3 v 4 v~ 

_ .iiiii.ii  iii..iiii L I ,  ......  i..L ILl ........ t Y  
v 6 v~ v 8 v 9 V]o vzz 

Fig. 2. Next-to-leading diagrams for qC t ~ g~,*. 

G1 G 2 G 3 G 4 

....... " ~i ~ [ IL~ i~2 ~ 
LU.* ,***,* t, 3 ° ' ~ 4  

G 5 G 6 G 7 G 8 

Fig. 3. Diagrams for qq --, gg3'*. 

scat ter ing.  The  d iagrams  H of fig. 5 are for qq scattering.  H 5 through H 8 should be 

inc luded  on ly  if ei ther the ini t ial  two quarks or final two quarks are identical .  

A f t e r  no t a t i ona l  pre l iminar ies  in sect. 2, we outl ine the ca lcula t ional  p rocedure  

us ing d imens iona l  regular izat ion in sect. 3. A discussion of  how to conver t  f rom MS 

fac to r i za t ion  to any other  scheme is descr ibed in sect. 4. In  sect. 5, we demons t r a t e  

tha t  we can  s ideskip most  of the difficult ies associated with Y5 in d imens iona l  

real

Both virtual and real divergent, but divergences 
cancel, finite pieces left over
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Logarithmic resummation

3.2 Derivation of LL Result for dσexcl
n

The inclusive cross sections dσincl
n contain Sudakov double logarithms of kinematic invariants

∼ ln2 tin/Q. These inclusive logarithms become large close to the singular region of phase
space where at least one of the tin becomes much less than Q and need to be resummed.
Physically, these logarithms arise from phase space restrictions on the integral over additional
real emissions, which by definition have to happen below the emission scale of the resolved
emissions. In addition, the exclusive cross section dσexcl

n (µ) also contains large exclusive
double logarithms of the scale µ that arise from integrating over the singular regions of Φn+1

with an explicit cut on the resolution variable for each singular region with t̂in < µ.
Following the discussion of the previous section, we can sum these logarithms by writing

a differential equation for dσexcl
n (µ) and solving this equation with the appropriate boundary

condition. To derive the differential equation, we start from the definition of dσexcl
n (µ) given

in Eq. (2.7). We use the well-known soft-collinear factorization of the cross sections which
states that in a soft-collinear region, the (n+1)-body cross section can be factorized into the
product of an n-body cross section and an appropriate singular function,

�
dσincl

n+1

dΦn+1

�

i

=
dσLL

n (µF )
dΦi

n
Qi(Φi

1, µF )Ri
n+1(Φn+1) , (3.12)

where dσincl
i was defined in Eq. (??) (TODO) The “splitting function” Qi(Φi

1, µF ) has the TODO: Need to
add an equation
defining this after
Eq. (24)

same singular behavior as dσincl
n+1 in the limit tin+1 → 0. Since the splitting function only

needs to describe the singular behavior of phase space in each singular region, it can be
chosen to only depend on Φi

1, with the remaining function describing the non-singular part
of the matrix element as depending only on Φi

n. Using this result together with the definition
for the exclusive projection given in Eq. (2.25) we find

dσLL
n (µ)
dΦn

Rn(Φn) =
dσincl

n

dΦn
−

�
dΦn+1

�

i

dσLL
n (µF )
dΦi

n
wi

n+1 Qi(Φi
1, µF )

×δ(Φn − Φi
n) θ(Λ > tin+1 > µ) Rn(Φn) . (3.13)

Now we are ready to take the derivative with respect to µ to obtain an RGE for the
exclusive cross section. As discussed in Section 3.1, we need a homogeneous differential
equation to allow for a resummation of logarithmic terms. This can be achieved, by choosing
the factorization scale for each singular region to be µF = tin+1. We find

µ
d
dµ

dσLL
n (µ)
dΦn

= −µ

�
dΦn+1

�

i

dσLL
n (tin+1)
dΦn

wi
n+1 Qi(Φi

1) δ(Φn − Φi
n) δ(tin+1 − µ)

= γn(µ)
dσLL

n (µ)
dΦn

, (3.14)

where we have suppressed the dependence of the splitting function on the factorization scale
tin+1 and in the last step we introduced the anomalous dimension γn(µ) of dσexcl

n (µ), which
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is given by the integral over the splitting function,

γn(µ) = −µ
�

i

�
dΦ

i
1 wi

n+1 Q(Φ
i
1) δ(tin+1 − µ) . (3.15)

The solution to the RGE in Eq. (3.14) is

dσLL
n (µ)

dΦn
=

dσLL
n (µ0)

dΦn
∆n(µ0, µ) , (3.16)

where the Sudakov factor ∆n(µ0, µ) is given by

∆n(µ0, µn) = exp

�� µn

µ0

dµ γn(µ)

�
= exp

��

i

�
dΦ

i
1 wi

n+1 Q(Φ
i
1) θ(µ0 > tin+1 > µn)

�
. (3.17)

In the second step we assumed µ0 > µ to convert the integral limits into θ functions. Other-

wise, the choice of the initial scale µ0 is arbitrary.

In order to resum all the logarithmic terms in dσLL(µ) by this equation, one of course

needs a choice for µ0 such that the initial condition does not contain any large exclusive

logarithmic terms, ensuring that all logarithms in the exclusive cross section are generated by

the Sudakov factor. In other words, we need to identify a scale µ0, for which From Eq. (3.13)

it is immediately obvious that one can write

dσLL
n (tmax

n+1)

dΦn
Rn(Φn) =

dσincl
n

dΦn
. (3.18)

Since the inclusive cross section does not contain any exclusive logarithms, it immediately

follows that for the scale choice µ0 = tmax
n+1 there are no large logarithmic terms in dσLL

n (µ).

Putting all this information together, we can obtain a recursive formula

dσLL
n (µ)

dΦn
Rn(Φn) =

�

i

wi
n−1

dσLL
n−1(t

i
n−1)

dΦi
n−1

Qi
(Φ

i
1) ∆n(tmax

n−1, µ) θ(tin−1 > µ)Rn−1(Φ
i
n−1) ,

(3.19)

where all large logarithmic terms are resummed at LL by the Sudakov factor ∆n. This is the

final result for the exclusive cross section with LL resummation.

4. NLO

4.1 Next-To-Leading Fixed Order Calculation

In this section we will obtain explicit expressions for the exclusive MC cross sections, dσexcl
n ,

at next-to-leading order in perturbation theory. At NLO, we write the partonic cross sections

dσparton
n as

dσparton
n

dΦn
= Bn(Φn) + Vn(Φn) + · · · , (4.1)

– 16 –

Δn = Sudakov factor

If cross-section factorizes into terms depending on 
only one scale, resums all logarithms of μ

RG Equation (μ d/dμ) Solution exponentiates

Perturbative expressions at higher order always 
contain logarithms of ratios of scales in the problem

RGE known to sum all logs in single scale problems
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Kinetic expansion

+ =
2

xP(s,z)
2

In limit of small angle radiation

In general, can show that procedure continue
σn = σn-1 x P(s,z)

Recursive algorithm to build up n-body final state
(Parton Shower)

Another way of writing result: σ3 = σ2 x P(s,z)
Corrections are suppressed by angle of the emission
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The need for combination

A general calculation needs to combine all three 
approaches for best accuracy

Different expansions are important in different 
kinematical regions

Perturbative expansion: Most important for inclusive 
observables containing several widely separated jets

Logarithmic resummation: Most important if kinematical 
cuts introduce other small scales in the problem

Kinematic expansion: Most important to understand jet 
substructure and implement high multiplicity final states
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dΦn

dΦn+1

dΦn+2

Pictorial phase space
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Pictorial phase space

dΦn

dΦn+1

dΦn+2
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Pictorial phase space

Region of Φn looks like Φn-1

Define resolution variable tn 
(tn →0 in collinear region)

1

0
t

1

0
tn

1

0
tn

dΦn

dΦn+1

dΦn+2
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The parton shower

dΦn

dΦn+1

dΦn+2
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The parton shower
Calculated to given order 
in perturbation theory or 
logarithmic resummations

dΦn

dΦn+1

dΦn+2

Perturbative
calculation
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The parton shower
Calculated to given order 
in perturbation theory or 
logarithmic resummations

dΦn

dΦn+1

dΦn+2

Perturbative
calculation

Parton shower

Parton shower

(Good result)

(Good result)

Filled by recursive 
algorithm using 1→2 
AP splitting functions
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Combining FO with PS

dΦn

dΦn+1

dΦn+2

Perturbative
calculation

Parton shower

Parton shower

Perturbative
calculation

Parton shower

How do I add perturbative 
calculations for more particles?

Double
counting of 
phase space!
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Perturbative
calculation

dΦn

dΦn+1

dΦn+2

Perturbative
calculation

Parton shower

Parton shower

Parton shower

tcut

Main physics question:
What is correct expression for 

perturbative calculation

Combining FO with PS
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For LO calculations this problem is 
essentially solved

CKKW matching procedure 
Different implementations: 
Madgraph, Sherpa, Alpgen, ...

For NLO calculations some first 
attempts exist

Go by the name of MC@NLO, 
POWHEG
Only give NLO for one multiplicity

How do I get NLO everywhere

LO
LO

LO

NLO
LO

LO

Combining FO with PS
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Development of Geneva
Geneva (Generate NLO Events Analytically) is a new framework 

developed by my group. It combines

1. Perturbative calculations
2. Logarithmic resummation
3. Parton showers

Interfaces with any parton shower algorithm desired (Pythia, 
Herwig, Sherpa, ...)

Goal will be a standalone program available to LHC experiments

Will use latest fixed order calculations (Blackhat, etc)

NLO
NLO

NLO
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Can get exclusive cross sections correct (including large 
logarithmic resummation)
Get large logarithmic resummation for all observables
Generate common event sample for different processes
Easy implementation of new fixed order QCD calculations

Development of Geneva
Main advantages of Geneva

Main difficulties
Need to have NLO simultaneously with log resummation

Not accomplished in general using traditional QCD

SCET allows to derive the required expressions



Christian Bauer CPV Sendai 2010Christian Bauer Aspen 2011

Development of Geneva

Main problem is to resum all logarithms while having 
expression correct to NLO

Not accomplished yet using traditional QCD methods

SCET naturally combines both fixed order calculations 
with logarithmic resummation

It is possible to derive the expressions needed
Allows in principle to go to higher order in fixed and 

logarithmic calculations

The theoretical difficulty
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The SCET framework
1. Perturbative calculations
2. Logarithmic resummation
3. Parton showers

NLO
NLO

NLO

Perturbative calculations come from matching calculations either 
between QCD and SCET, or different versions of SCET

Logarithmic resummation comes from RG evolution in SCET

No need to come up with magic algorithms to achieve this, SCET 
gives precise predictions

Parton showers can be viewed as performing SCET ME calculations
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Some first results
Fixed order calculations
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Some first results
Interfaced with Pythia 8

0.005 0.010 0.050 0.100

0.5

1.0

1.5

2.0

Log�1�T�

Pre
liminar

y



Christian Bauer CPV Sendai 2010Christian Bauer Aspen 2011

Some first results
Interfaced with Pythia 8
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Conclusions/Outlook
Event generators are crucial tool to connect theory 
and experiment

Much progress over past decade to improve precision 
of theory in event generators

Geneva will allow full NLO calculations implemented

First simple calcs are implemented and working

Currently implementing full calcs into code

Hopefully can aid LHC when precision become more 
and more important


