Recent Results from ALICE

Oak Ridge National Laboratory/
University of Tennessee
on behalf of the ALICE Collaboration
Aspen Center for Physics, Aspen, CO
14 February, 2011

Heavy Ion Nuclear Physics

- Ultrarelativistic heavy ion nuclear physics
- Investigate properties of nuclear matter at high temperature and density
 - Improve understanding of strong force concerning deconfinement and chiral symmetry breaking/restoration (transition from quark to hadronic matter).
 - Explore QCD in novel regimes. Study the phase diagram of QCD matter.
 - Probe conditions of quark/hadron phase transition (universe at 10⁻⁶ s) and fully characterize the properties of the novel produced matter.

Heavy Ion Nuclear Physics

RHIC Discoveries

- Particles are flowing like an ideal hydrodynamical fluid. Viscosity/entropy ratio is lowest observed, near predicted quantum mechanical lower bound. A perfect liquid.
- Suppression of particles with a high transverse momentum in Au+Au collisions, but not d+Au ("jet suppression"). Opacity very high, effectively stops quarks and gluons.
- Significant correlated emission of partons ("flow")
 with shock-wave dynamics. Rapid thermalization of
 created medium, fluid expansion, even heavy
 quarks are swept up by flow.

RHIC Discoveries

- Almost as many anti-protons as protons produced at high transverse momentum.
- Energy density in the center of the collision is about 30 times that of a normal nucleus.
- The source of produced particles is large and short-lived.
- Modification of charm production measured via semileptonic decays.
- A novel state of matter has indeed been created at RHIC (and now the LHC).
- Fascinating Anti de Sitter space / Conformal Field Theory (AdS/CFT) correspondence between QCD (quark gluon plasma) and string theory. The RHIC "fireball" can be "mapped" to a "gravity dual" (mathematical black hole) via this correspondence.

Denser and Hotter

Central Collisions	SPS	RHIC	LHC measured	LHC anticipated
s ^{1/2} (GeV)	17	200	2760	5500
ε (GeV/fm³)	3	5	~3 x RHIC	15 – 60
initial T (MeV)	200	300		600
τ_{QGP} (fm/c)	< 1	1.5 - 4.0		4 –10

ALICE

ALICE Results

- Recent Pb+Pb collision measurements:
 - Two-pion Bose-Einstein correlations in central Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV, Phys. Lett. B 696 (2011) 328-337.
 - Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, arXiv:1012.1657v1 [nuclex].
 - Suppression of Charged Particle Production at Large Transverse Momentum in Central Pb-Pb Collisions at √s_{NN} = 2.76 TeV, Phys. Lett. B 696 (2011) 30-39.
 - Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett. 105, 252302 (2010).
 - Charged-particle multiplicity density at mid-rapidity in central Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Rev. Lett. 105, 252301 (2010).
 - Numerous other analyses of recent data are underway.
 http://aliweb.cern.ch/Documents/generalpublications

ALICE Results

Recent p+p collision measurements:

- Transverse momentum spectra of charged particles in proton—proton collisions at √s = 900 GeV with ALICE at the LHC, Physics Letters B 693 (2010) 53–68.
- Two-pion Bose-Einstein correlations in pp collisions at √s = 900 GeV, Phys. Rev. D 82, 052001 (2010).
- Midrapidity Antiproton-to-Proton Ratio in pp Collisons at √s = 0.9 and 7 TeV Measured by the ALICE Experiment, Phys Rev Lett Vol.105, No.7, (2010).
- Charged-particle multiplicity measurement in proton—proton collisions at $\sqrt{s} = 7$ TeV with ALICE at LHC, Eur. Phys. J. C (2010) 68: 345–354.
- Charged-particle multiplicity measurement in proton—proton collisions at \sqrt{s} = 0.9 and 2.36 TeV with ALICE at LHC, Eur. Phys. J. C (2010) 68: 89–108.
- First proton—proton collisions at the LHC as observed with the ALICE detector: measurement of the charged-particle pseudorapidity density at \sqrt{s} = 900 GeV, Eur. Phys. J. C (2010) 65: 111-125.

ALICE Data

YEAR	BEAM	$\sqrt{s_{NN}}$	EVENTS
2009	p+p	0.9 TeV	$3 \times 10^5 (MB)$
2009	p+p	2.36 TeV	4 x 10 ⁴ (MB)
2010	p+p	0.9 TeV	8 x 10 ⁶ (MB)
2010	p+p	7.0 TeV	8 x 10 ⁸ (MB)
			1 x 10 ⁸ (muons)
			2×10^7 (high N_{ch})
2010	Pb+Pb	2.76 TeV	few x 10 ⁷

ALICE: Dedicated Heavy Ion LHC Experiment over 30 countries, over 100 institutes, over 1000 members

Centrality

spectators

participants

Lorentz-contracted ions in center of mass frame

- Centrality corresponds to impact parameter.
- For a given b, Glauber model predicts N_{part} and N_{coll}.
 - Hard processes tend to scale as ~ N_{coll}.
- Can classify events based on centrality class.

Photo: J.Reed Roy J. Glauber

Centrality Dependence

- Study $dN_{ch}/d\eta$ as a function of centrality (impact parameter) for Pb+Pb collisions at 2.76 TeV.
- Classify collisions into 9 centrality percentile ranges.

Centrality Dependence

arXiv:1012.1657v1 [nucl-ex], submitted to PRL

- $dN_{ch}/d\eta$ normalized per participating nucleon pair increases by about a factor of 2 from peripheral (70–80%) to central (0–5%) collisions.
- Dependence of multiplicity on centrality at 2.76 TeV very similar to that observed at 0.2 TeV (RHIC). Observation discriminates between possible theoretical models.

Flow

- Initial state spatial anisotropy of reaction zone leads to final state momentum anisotropy.
- Results in asymmetric particle emission.
- Second component of Fourier decomposition, v₂, indicates degree of azimuthal anisotropy.

Flow

Phys. Rev. Lett. 105, 252302 (2010)

- First elliptic flow measurement at the LHC. Consistent with predictions of hydrodynamical flow models.
- $v_2(p_T)$ agrees with RHIC measurements to within uncertainties.
- Integrated flow increases ~30% from $\sqrt{s_{NN}}$ = 200 GeV to 2.76 TeV.
- Future elliptic flow measurements for identified particles will clarify the situation further.

Nuclear Modification Factor

- Charged particle production at high transverse momentum in Pb+Pb collisions.
- Nuclear medium effects quantified using modification factor R_{AA} .
- Study dependence of R_{AA} on centrality.

$$R_{AA}(p_T) = \frac{\left(1/N_{evt}^{AA}\right) d^2 N_{ch}^{AA}/d\eta dp_T}{\langle N_{coll} \rangle (1/N_{evt}^{pp}) d^2 N_{ch}^{pp}/d\eta dp_T}$$

$$= \frac{\text{what you get}}{\text{naively scaled expectation}}$$

pseudorapidity
$$\equiv \eta \equiv -\ln\left(\tan\frac{\theta}{2}\right)$$

Nuclear Modification Factor

Phys. Lett. B 696 (2011) 30-39

- Only weak parton energy loss for peripheral collisions.
- For central collisions, large enhanced parton energy loss at the LHC and an even denser medium than observed at RHIC.
- Studies concerning energy loss and medium density will benefit from improved understanding of gluon shadowing and saturation.

Antiproton to Proton Ratio

- Measure ratio of yields of antiprotons and protons in p+p collisions at 0.9 and 7.0 TeV.
- Test models of baryon-number transport and set limits on any additional contributions to baryon-number transfer.
- ALICE's p+p collision data, a control measurement for A+A studies, provides a rich area of study in and of itself.

Antiproton to Proton Ratio

Phys. Rev. Lett. 105, 072002 (2010)

- Ratio rises from 0.9 to 7.0 TeV.
- Ratio is independent of rapidity and transverse momentum.
- Consistent with standard models of baryon number transport (e.g. baryon number transfer with the existence of the string junctions based on the Veneziano et al. model with string junction intercept $a_J = 0.5$).
- Stringent limits set on any additional contributions constrains models.

Bose-Einstein Correlations

- Study Hanbury-Twiss two-pion correlations in central Pb+Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV (and previously in p+p collisions at 900 GeV).
- First two-pion Bose-Einstein correlation measurement for Pb+Pb collisions at the LHC.
- Measure one-dimensional Gaussian HBT radii as a function of k_T .

Bose-Einstein Correlations

Phys. Lett. B 696 (2011) 328-337

- Extracted pion source radii exceed those at RHIC by ~30%.
- Increase is present for both longitudinal and transverse radii.
- Decoupling time for mid-rapidity pions 40% greater than at RHIC.

ALICE measurements indicate LHC fireball is indeed hotter, lives

longer, expands larger than at RHIC. []

Bose-Einstein Correlations

Phys. Rev. D 82, 052001 (2010)

- Previous result for p+p collisions.
- Extracted HBT radius R_{inv} increases with event multiplicity as observed by other experiments.
- However, dependence of R_{inv} on k_T is much less steep.

Conclusions

- First observation of elliptical flow for Pb+Pb collisions at the LHC.
- Jet suppression with even greater parton energy loss and medium density than observed at RHIC.
- Exciting analyses of Pb+Pb collisions at unprecedented energies and p+p collisions are underway.
- See http://aliweb.cern.ch/ for much more information.

