

Heavy Flavour Physics at ATLAS

Vivek Jain, Indiana University

(for the ATLAS Collaboration)

New Data from the Energy Frontier, Aspen, Feb. 16, 2011

Outline

- Introduction
 - Heavy Flavour Physics Program
 - ATLAS detector
- Results (available at this link)
 - Quarkonia J/ψ, Upsilon
 - B physics Exclusive signals
 - Charm physics Exclusive signals
- Future Plans
- Summary

Efficient low pt muon

trigger

10 fb⁻¹

1 fb⁻¹

100 pb⁻¹

 10 pb^{-1}

100 fb⁻¹

Very good

- Muon coverage
- Track momentum resolution
- · Mass resolution
- Vertex resolution
- Well understood MC

Rare decays

Searches for new CP-violation in weak decays of B-mesons; rare decay searches; Λ_b polarization

B-hadron properties, new decay limits Understand backgrounds for rare decays $B_c (\Lambda_b) \to J/\psi \pi (\Lambda)$ signals

- Detector & trigger understanding / calibration
- J/ψ , Y and exclusive B-channels
- Early measurements of well known B and D-decays (production cross-section), exclusive and inclusive B lifetimes

Time

LHC startup (Nov. 2009)

Inner Detector

Coverage: $|\eta| < 2.5 \ (2.0 \ \text{for TRT})$

Accurate track & vertex reco.

Resolution goal:

 $\sigma_{pT}/p_T = 0.05\% p_T \oplus 1\%$

ID contains 3 sub-detectors (resolutions)

Pixel detector: $10/115 \mu m$ in $R\phi/z$

Silicon strip detector: 17/580 µm

Transition radiation tracker: 130µm Ro

2 T solenoidal magnetic field

Muon Reconstruction

In selection of J/ ψ candidates we consider two types of muon:

Combined muons have an ID track matched to a MS track and refitted through the detector to give the best measurement. At least one muon in a pair must be combined.

Tagged muons are ID tracks matched to muon segments when extrapolated to the MS. Such muons generally have low momentum.

Can reconstruct muons with Pt>1 GeV

B physics triggers

- Triggers used for analyses ranged from those seeded by Minimum bias at L1 (J/ψ diff. x-section), Single muon at L1 to dimuon triggers.
 - Dimuon triggers pick up J/ψ (both prompt and from B's), Upsilon, B → μμ (X)
 - Seeded by a single muon at L1 or a dimuon at L1.
 Refinement at higher trigger levels
- In future, e.g., L ~ 10³³, we will still have the dimuon triggers, although the ones seeded by a single muon at L1 may pick up a prescale.

- Historically Quarkonium Production & Polarization not understood
- Some popular models on the market :
 - Color Singlet Model (CSM) LO calculation badly underestimated experiment
 - □ Color Octet Mechanism (COM) (≡NRQCD) Gave shape but no absolute prediction

 $\Upsilon(1s)$

- Recently, theorists started to calculate the NNLO* contribution in Color Singlet Model
 - Very large!
 - Good agreement with CDF data
- J.P. Lansberg arXiv:0811.4005

* Note: Not full NNLO calculation, currently, only real contribution up to α_s^5 (NLO yield + contributions from pp \rightarrow Q + jjj)

Onia Polarization

- Situation is equally confusing
- Tevatron experiments disagree with each other and with Theory

Vivek Jain

0.8

0.6

0.2

-0.2

-0.4

-0.6

prompt J/Ψ

CDF Data

NRQCD

[CDF collaboration 05]

k_r-factorization

11

$J/\psi \rightarrow \mu\mu$ differential cross-section & Ratio of prompt to non-prompt J/ψ

- J/ψ are also produced in B decays, so we need to account for those
 - □ For now, compare measured cross-section with MC, which includes both sources. Also includes feed-downs
 - □ In the pipeline Double differential (pT,y) x-section;
 Prompt Cross-section in (pT, y) bins
- Use 9.5 nb⁻¹ for differential cross-section
- Ratio of prompt/non-prompt J/ψ with 17.5 nb⁻¹

J/ψ Production Cross Section

 Get true yield of J/ψ candidates from the observed yield, by applying an event-by-event "weight"

$$w^{-1} = \mathcal{A}(p_T, y, \lambda_i) \times \mathcal{E}_{\mu}(\vec{p}_1) \times \mathcal{E}_{\mu}(\vec{p}_2) \times \mathcal{E}_{trig}(\vec{p}_1, \vec{p}_2)$$
Detector Acceptance

Reconstruction Efficiency

Trigger Efficiency

- Detector Acceptance :
 - Probability for both muons to be in the detector fiducial volume (generator level MC)
- Reconstruction efficiency :
 - Estimated from prompt J/ ψ MC and validated with data. |η(μ)| < 2.5, P(μ) > 3.5 GeV
- Trigger efficiency :
 - Relative to offline calculated using minimum bias data

Fitting Mechanism

 Use Unbinned Maximum Likelihood Fit to extract number of J/ψ candidates

Sample used in analysis

$$N = 710 \pm 34$$

 $Mass = 3.096 \pm 0.003 \text{ GeV}$
 $Width = 70 \pm 3 \text{ MeV}$

Final Fitting Results

Correct J/ψ yield by event weight

For display only.Weighted Yields

0.75≤|y|<1.50 10≤p_<15 GeV 1.50≤|y|<2.25 10≤p_<15 GeV

0.00≤|y|<0.75 10≤p₊<15 GeV

Systematic Uncertainties

Acceptance :

Biggest effect is the unknown spin-alignment

- Single muon reconstruction and Trigger efficiency:
 - From minimum bias Monte Carlo, validated by Data with proper uncertainty (mainly the systematic at low pT turn on curve)
- Muon selection :

Compare the results between different combinations

J/ψ spin-alignment

Acceptance depends on the as yet unknown angular distribution of the decaying particle (spin-alignment of J/ψ)
 by the formula

$$\frac{d^2N}{d\cos\theta^*d\phi^*} \propto 1 + \lambda_\theta\cos^2\theta^* + \lambda_\phi\sin^2\theta^*\cos2\phi^* + \lambda_{\theta\phi}\sin2\theta^*\cos\phi^*$$

- Φ*: between J/ψ prod & decay planes in lab
- Use 5 different configurations, obtain systematic uncertainty:

• e.g.,
$$\lambda_{\theta} = -1$$
, $\lambda_{\phi} = \lambda_{\theta \phi} = 0$
Vivek Jain

Results and future improvements

Central value is for inclusive J/ ψ for 'flat' polarisation hypothesis (Red: statistical error)

Only for <u>direct</u> vector quarkonium production (Lansberg, PRL 101 (2008) 152001)

In order to be compared to inclusive ATLAS data, needs correcting for:

- feeddown from χ_c -states
- non-prompt contribution from $B \rightarrow J/\psi X$ decays

Corrections made using Tevatron measurements

Ratio of non-prompt to prompt J/ψ cross section

- → non-prompt: from decay of B-hadrons.
- prompt from direct & feed-down from other charmonium states

$$F = \frac{pp \to b\overline{b}X \to J/\psi X'}{pp \to J/\psi X''}$$

◆ Discriminating variable is the pseudo-proper time:

$$τ = L_T M^{\mu\mu}/P_T^{\mu\mu}$$
 $\simeq L_T M^B/P^B_T α e^{-τ/τ(B)}$

L_T → decay length wrt the primary vertex in the xy projection

Upsilon Observation

Using ~290 nb⁻¹ 2010 ATLAS data

Cross-section measurements are in the pipeline

- Muon trigger as in
 J/ψ analysis
- Selection Criteria :
 - Good primary vertex
 - \neg pT(μ_1, μ_2) > 4, 2.5 GeV
 - $|\eta(\mu)| < 2.5$
- ~950 Y(1S) candidates

Exclusive B signals: $B^+ \rightarrow J/\psi K^+$

 Very useful for understanding reconstruction, flavour tagging algorithms that will be used for CP violation, studying rare decays

Exclusive D^(*) signals

- A good testing ground for QCD predictions for heavy flavour production
 - Cross-section measurements are in the pipeline
 - Selected using minimum bias trigger
- Test reconstruction, vertexing algorithms
 - Width of mass distributions in data agree with MC
- Exclusive signals can also be used to understand tracking efficiency
 - \square D \rightarrow K3 π / D \rightarrow K π is well-known (PDG: 2.08±0.05).
 - Compare our result with PDG. In the pipeline

Future Plans

Quarkonia

- Polarization analysis on 2010 data in progress
- ψ' (prompt), Upsilon cross-section, polarization
- Search for various X, Y, Z states in progress
- Open charm and beauty studies
 - $\hfill\Box$ Cross-sections (also in association with quarkonia), Λ_b polarization, Exclusive & Inclusive B lifetimes, B_c
- Rare decays Need datasets ~ few fb -1
 - $\ \square \ B_s \ \rightarrow J/\psi \ \Phi lifetimes, helicity amplitudes$
 - Additional sources of CP violation

Vivek Jain

26

$B_s \rightarrow \mu\mu$

- □ Rate in SM: $(3.42\pm0.52)*10^{-9}$
- Current PDG (90% CL) Limit: < 4.7*10-8</p>
- Good mode to search for SUSY with large tanβ
- Studies are on-going
- Can continue search in high Luminosity era
 - Triggers will probably need to be modified

Summary

- B physics program at ATLAS is starting to produce results
 - See benchmark modes, initial physics results
 - J/ψ cross-section, Upsilon observation, Exclusive B and Charm meson signals
 - Early stages
 - Understanding issues relating to reconstruction, trigger, etc.
- Exciting times lie ahead

Extra stuff

Muon Spectrometer

- Precision tracking chambers and trigger chambers
 - Monitored drift tubes
 - Cathode drift chambers
 - □ Thin-gap chambers
 - Resistive plate chambers
- $|\eta|$ coverage up to 2.7
- Magnetic field produced by 3x8 air-core toroids
 - □ Barrel/End Cap toroids
 - Complex field map
 - Arr B ~ 0.5T, but varies in R/Z
 - Bend in barrel is in Z
 - Bend in ECap is along R

$$\sigma_{p_T}/p_T$$
=10% at p_T = 1 TeV

B-Trigger Strategy

Di-muon Trigger

Two L1 muons

confirm muon at L2

Tracking in small RoI

Mass & vertex cuts

Single µ Trigger

One L1 muon

confirm muon at L2

Tracking in one large

RoI, search for the 2rd muon

Mass & vertex cuts

FullScan Trigger

One L1 muon confirm muon at L2 Tracking in entire detector, search for the 2rd muon Mass & vertex cuts

The lowest level 1 muon trigger threshold are 4 GeV, 6 GeV

- Single L1 muon triggers:
- Use lowest muon pT threshold and FullScan(time consuming) to give highest efficiency at startup
- L1 di-muon triggers:
 - Use lowest muon pT threshold (MU4)
 - Reduce the background and will be needed at higher luminosity.

J/ψ Analysis

Event Selection :

- At least ONE primary vertex which has 3 tracks associated (each of them has quality cuts, 6 SCT, 1 Pixel hits, to remove the badly measured muons)
- Opposite charge muon pairs with successful vertex fit
- ONE of the muon candidates needs to be "Combined Muon"
- $|\eta(\mu)| < 2.5$
- Momentum Cut :
 - Cross Section Measurement :
 - \Box P(μ) > 3.5 GeV, $|\eta|$ <2
 - \Box P(μ) > 8 GeV, $|\eta| > 2$
- Trigger Configurations :
 - Muon hardware level 1 trigger or minimum bias trigger with confirmation at MS

Fitting Mechanism

- Unbinned Maximum Likelihood Fit is used to extract the J/ψ mass and the number of J/ψ candidates
- Log- Likelihood function :

$$\ln \mathcal{L} = \sum_{i=1}^{N} w_i \cdot \ln \left[f_{signal}(m_{\mu\mu}^i) + f_{bkg}(m_{\mu\mu}^i) \right]$$

Signal PDF (Gaussian function) :

$$f_{signal}(m_{\mu\mu}, \delta m_{\mu\mu}) \equiv a_0 \frac{1}{\sqrt{2\pi} S \delta m_{\mu\mu}} e^{\frac{-(m_{\mu\mu} - m_{J/\psi})^2}{2(S \delta m_{\mu\mu})^2}}$$

Background PDF: linear function

* Using event-by-event mass error

Reconstructed sample used as Input to analysis

$$N = 592 \pm 30$$

 $Mass = 3.095 \pm 0.003 \text{ GeV}$
 $Width = 71 \pm 4 \text{ MeV}$

Effect of spin-alignment uncertainty

(e)
$$\lambda_{\theta} = +1, \lambda_{\phi} = -1, \lambda_{\theta\phi} = 0$$

Acceptance maps and weight factors for J/ψ at spin alignment working points

p_T , GeV	FLAT	LONG	TRP0	TRPP	TRPM	
	$0 < y \le 0.75$					
6 – 8	1.00	0.67	1.31	1.30	1.32	
8 – 10	1.00	0.69	1.29	1.32	1.26	
10 – 15	1.00	0.72	1.24	1.25	1.23	
	$0.75 < y \le 1.5$					
4 – 6	1.00	0.69	1.29	1.55	1.15	
6 – 8	1.00	0.72	1.25	1.29	1.22	
8 – 10	1.00	0.74	1.21	1.22	1.20	
10 – 15	1.00	0.77	1.18	1.18	1.18	
	$1.5 < y \le 2.25$					
0 – 2	1.00	0.81	1.15	1.55	0.96	
2 – 4	1.00	0.73	1.23	3.23	0.77	
4 – 6	1.00	0.64	1.18	1.98	0.87	
6 – 8	1.00	0.79	1.15	1.44	0.98	
8 - 10	1.00	0.80	1.15	1.26	1.05	
10 – 15	1.00	0.82	1.08	1.18	1.08	

J/ψ Spin Alignment – cont.

Five spin alignment scenarios:

□ Longitudinal : λ_{θ} = -1, λ_{ϕ} = $\lambda_{\theta\phi}$ = 0

□ 1st Transverse : λ_{θ} = +1, λ_{ϕ} = $\lambda_{\theta\phi}$ = 0

 \square 2nd Transverse : λ_{θ} = +1, λ_{ϕ} = +1, $\lambda_{\theta\phi}$ = 0

 \supset 3rd Transverse : λ_{θ} = +1, λ_{ϕ} = -1, $\lambda_{\theta\phi}$ = 0

For Non-Flat distributions :

 Re-weighting the Flat distribution in truth level according to the formula in previous page C. Lourenço
Introduction polarisation working points
(arXiv: 1006.2738)

Systematics-dominated @low p_T: Main systematics are from trigger and muon reconstruction

Will improve somewhat with more data, but will always be limited in this region of phase space

Comparable variation from spin-alignment uncertainty

Can only be reduced by direct measurement --- may take a while

$p_T(J/\psi)~{ m GeV}$	Mean p_T GeV	$\frac{d\sigma}{dp_T dy} \cdot \text{Br}[J/\psi \to \mu^+ \mu^-] \text{ (nb/GeV)}$					
$0.0 \le y < 0.75$							
		Data	Рутніа				
6 – 8	6.9	$3.6 \pm 1.6 \text{ (stat)} ^{+3.9}_{-0.3} \text{ (syst)} ^{+3.9}_{-2.3} \text{ (theory)}$	76.5 ± 1.5				
8 – 10	8.9	$3.08 \pm 0.66 \text{ (stat)} ^{+0.40}_{-0.22} \text{ (syst)} ^{+1.7}_{-1.4} \text{ (theory)}$	26 ± 1				
10 – 15	11.9	$0.75 \pm 0.18 \text{ (stat)} ^{+0.11}_{-0.05} \text{ (syst)} ^{+0.37}_{-0.32} \text{ (theory)}$	5.7 ± 0.3				
$0.75 \le y < 1.50$							
		Data	Рутніа				
4 – 6	4.9	$23.2 \pm 4.0 \text{ (stat)} ^{+5.2}_{-4.9} \text{ (syst)} ^{+18.9}_{-9.9} \text{ (theory)}$	260 ± 3				
6 – 8	6.9	$8.0 \pm 1.0 \text{ (stat)} ^{+1.9}_{-0.6} \text{ (syst)} ^{+3.6}_{-3.0} \text{ (theory)}$	72 ± 2				
8 – 10	8.9	$1.40 \pm 0.34 \text{ (stat)} ^{+0.18}_{-0.09} \text{ (syst)} ^{+0.73}_{-0.62} \text{ (theory)}$	23.3 ± 0.9				
10 – 15	11.9	$0.58 \pm 0.13 \text{ (stat)} ^{+0.06}_{-0.04} \text{ (syst)} ^{+0.26}_{-0.24} \text{ (theory)}$	4.9 ± 0.3				
$1.50 \le y < 2.25$							
		Data	Рутніа				
0 - 2	1.0	$49 \pm 20 \text{ (stat)} ^{+61}_{-26} \text{ (syst)} ^{+58}_{-21} \text{ (theory)}$	621 ± 3				
2 – 4	3.0	$48 \pm 10 \text{ (stat)} ^{+18}_{-18} \text{ (syst)} ^{+139}_{-20} \text{ (theory)}$	773 ± 3				
4 – 6	4.9	$19.1 \pm 2.7 \text{ (stat)} ^{+5.1}_{-3.5} \text{ (syst)} ^{+25.1}_{-6.6} \text{ (theory)}$	235 ± 2				
6 – 8	6.9	7.10 ± 0.88 (stat) $^{+1.32}_{-0.57}$ (syst) $^{+4.5}_{-2.2}$ (theory)	64 ± 1				
8 – 10	8.9	2.14 ± 0.43 (stat) $^{+0.33}_{-0.10}$ (syst) $^{+1.1}_{-0.8}$ (theory)	20.7 ± 0.9				
10 – 15	11.9	$0.37 \pm 0.11 \text{ (stat)} ^{+0.06}_{-0.03} \text{ (syst)} ^{+0.19}_{-0.16} \text{ (theory)}$	4.8 ± 0.3				

CEM: once a c-cbar pair is produced, creation of colour singlet bound states is governed by a suppression factor (Phys.Rep.462(2008) I 25)

No extra parameters used to extrapolate from Tevatron, using CTEQ6M

Agreement with preliminary ATLAS data remarkably good at low pt

Will be very interesting to compare with higher statistics data (soon!)

[R.Vogt]

Compare to Other LHC experiments

(compilation by H. K. Woehri)

 Have good agreement with other experiments

* LHCb, ALICE has further forward acceptance

