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Initial thermal state

LHC measurements allow a prediction of

Relic abundance from calculable mechanism

ΩDh2 = (#)
1

〈σv〉
A WIMP miracle?

 ΩDh2

Generic Test from 
New Physics 

at the Weak Scale??

Alternative 
Mechanism??

Particles of 
SM thermal bath

D

D

Freeze-Out

No dependence on unknown UV physics: TR ,    , initial conditions, ...η

Depends on: mi ∼ v



Thermal Properties of DM at T   v∼
Three possibilities

1.   Part of Standard Model thermal bath WIMPs

2.   Not part of a thermal bath FIMPs

3.   Part of a hidden sector thermal bath Hidden Sector DM

Both 2 and 3 allow an IR dominated production mechanism
that may be tested at LHC
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Hidden DM:

 Stabilizing Symmetry

Carried by: 
DM, X, which stabilized

some visible sector particles
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T ′ " T X

X



The “Connector” Interaction   


eg  d=4

Hidden sector 
thermal bath

T ′

Visible sector 
thermal bath

T

Visible sector 
thermal bath

T

FIMP DM:

Hidden DM:

X

X

λ

λ

10−13 < λ < 10−6



The “Connector” Interaction   


eg  d=4

Hidden sector 
thermal bath

T ′

Visible sector 
thermal bath

T

Visible sector 
thermal bath

T

FIMP DM:

Hidden DM:

X

X

λ

λ

10−13 < λ < 10−6



 Allows X production V

V X X

V V

V

Dimensional analysis

YX ∼ λ2 MPl

v
 IR dominated; cutoff by masses

YX(T ) ∼ λ2 MPl
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Susy theories:  V is the LOSP: (χ̃±, l̃±, ...)

Applies to both FIMP and Hidden DM 



Completely general for any decay-dominated FI??   No -- later

Applies to connector interaction of any dimension
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Γi

m2
i

∝ 1
mi

Dominated by IR domination!

Simple model with just one coupling parameter λ

mLOSP

Lose               relation??τ(Ωh2)



Three  d=4 Connector Interactions   
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LHC Discovers      LOSPl̃−
m = 200 GeV

{
l̃− → l− + missing τ = 0.1 sec
reconstruction gives mX′ = 100 GeV

Not FO&D:                     too smallYFO(l̃−)
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Correct signal;  but FI from l̃− → l− + x̃′ gives Ωx̃′ = 10−2

Measure other superpartner masses 
and compute FI abundance from 

 q̃ → q x̃′, ... Ωx̃′ = 0.11 ??



III     
Asymmetric Freeze-In



U(1)XA           Symmetry in Hidden Sector   

U(1)X




leading to an X asymmetry

Non-Thermal:  T ′ "= T

Hidden sector 
thermal bath

T ′

Visible sector 
thermal bath

T X

λ

 V has multiple decay modes V → f1

V → f2

(no X)

(contains X)

ε =
Γ(V → X)−Γ(V̄ → X̄)
Γ(V → X)+Γ(V̄ → X̄)



U(1)XA           Symmetry in Hidden Sector   

U(1)X





 A large symmetric       is annihilated away by a large         , leavingYX 〈σv〉′
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 If                    conserved, simultaneous generation of        !!B − L + X ηB
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Asymmetric Freeze-In via               .   

h̃
χ̃0

 Non-LOSP       have fast decays


x̃′

They also have slow decays 
that contribute to FI of 

λ LHuX ′via

χ̃−χ̃−
W−

x̃′h̃
χ̃−

l−
λ

 At one-loop an asymmetry
is generated in the FI

χ̃− χ̃−
W−

x̃′ x̃′

l− l−

χ̃0

νλ

λ

+

λ LHuX ′

λ LHuX ′
 conserves ηB−L = −ηXB − L + X

 Sphalerons re-process the 
lepton asymmetry to give

ηB =
28
79

f(m̃i) ηX mX = 1.6 f GeV



DM Re-construction from LOSP lifetime

 χ̃− has fast decay χ̃− →W− χ̃0

 Must relate                           to LOSP lifetime.  eg for        LOSPl̃−τ(χ̃− → l− x̃′)

τ(l̃− → h x̃′) = r

(
mχ̃−

ml̃−

)
τ(χ̃− → l− x̃′)

susy mixing angles, etc

Must measure: susy spectrum
LOSP lifetime

CP violating phases

τ(χ̃− → l− x̃′) = 1.4×10−8s
( ε

10−5

)( mX

2GeV

)(
200GeV

mχ̃+

)2 (
102

g∗

)3/2
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Cosmological Bounds on Gravitinos
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Over much of mass range      is LSP!G̃
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Cosmological Bounds on Gravitinos

Overclosure
BBN 

problems

m3/2

TR

What’s going on here?

Much effort:  UV sensitive scattering 
production and limit on TR

1
m3/2MPl

G̃
(
m2

q̃ qq̃∗ + mg̃ g̃σµν Gµν + ...
)

All susy theories contain      : G̃

eV < m3/2 < 100 TeVmass:

interactions:

Over much of mass range      is LSP!G̃



Gravitino DM from Freeze-In
q̃ → q G̃

g̃ → g G̃

l̃→ l G̃

Y3/2 ∝
1

m2
3/2

∑

i

gi m̃3
i
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1010

m3!2

T R

TR/GeV

m3/2/GeV

mq̃

BBN
Problems

Occurs over a large fraction 
of the allowed TR



LHC Reconstruction of Gravitino DM
Ω h2 (m̃i, m3/2) independent of       determines m3/2

Allowing calculation of τNLSP (m̃i)
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LHC Reconstruction of Gravitino DM
Ω h2 (m̃i, m3/2) independent of       determines m3/2

Allowing calculation of τNLSP (m̃i)

LHC directly measures 
the cosmological production process!
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× ε Only FI has an asymmetric version 
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Gravitinos from Freeze-In
make Superb Susy DM Candidate
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Higher Dimensional Operators 
and UV Sensitivity   
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Decays typically dominate only if TR < 20 TeV

 Consider a universal small portal coupling λ

λ O4 +
λ

M∗
O5

IR domination by      if O4 TR <
M2

∗
m

eg M∗ ∼ 109 GeV
m ∼ v ∼ 200 GeV TR < 1016 GeV



Yield Plots:    FO  and  FO’   

T ′ ! T

FO′ wins〈σv〉′ # 〈σv〉



Yield Plots:  FO and Decay;  FI

Freeze-Out and Decay of  LOSP wins

Increase     by factor 100Γ

Freeze-In wins


